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The existence of scalar fields can be probed by observations of stochastic gravitational waves. Scalar
fields mediate attractive forces, usually stronger than gravity, on the length scales shorter than their
Compton wavelengths, which can be non-negligible in the early Universe, when the horizon size is small.
These attractive forces exhibit an instability similar to the gravitational instability, only stronger. They can,
therefore, lead to the growth of structures in some species. We identify a gravitational waves signature of
such processes and show that it can be detected by future gravitational waves experiments.
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Most of the elementary particles discovered in the past
century have Compton wavelengths that are much smaller
than the size of the atom, and, therefore, they cannotmediate
any long-range forces between atoms. However, in the early
Universe with the total energy density ρ, any force mediated
by particleswithmasses smaller than ρ1=2=MPl, whereMPl is
the reduced Planck mass, acts as a long-range force on the
scales of the Hubble horizon at that time. Of particular
interest are the forces that mediate attractive interactions
between particles, such as the Yukawa forces. The Yukawa
interactions are always attractive, and, unless the coupling is
unusually small, such forces are much stronger than gravity.
This has a profound effect on the dynamics of any particles
participating in such interactions. The attractive nature of the
force implies an instability similar to gravitational insta-
bility, and the growth of structures in the distribution of
density of some particle species is possible even in the
radiation dominated Universe [1–6]. This growth of iso-
curvature overdensities can lead to bound states [7–9] or,
accompanied by the radiative cooling caused by the same
Yukawa interaction, can lead to the formation of primordial
black holes (PBHs) [4,6].
We will explore a generic observable manifestation of

the structure formation due to the presence of the attractive
forces in the early Universe, namely, stochastic gravita-
tional waves (GWs). We will show that such an event in the
early Universe during either a radiation dominated (RD) era
or an intermediate matter dominated (IMD) era can produce
a signal detectable by the future GW detectors. The
possibility of an IMD era has been considered, in particular,
in connection with the formation of PBHs [10–13].

While previous work has demonstrated that gravitational
forces alone can generateGWs [14–16], herewewill explore
the effects of a force significantly stronger than gravity.
The formation of dark matter overdensities due to a long-

range scalar force has been examined in many different
contexts [1,2,4,5]. As in Ref. [4], we consider a heavy
fermion ψ interacting with a scalar field χ:

L ⊃
1

2
m2

χχ
2 − yχψ̄ψ þ � � � : ð1Þ

We will assume that the scalar is either massless or very
light, mχ ≪ m2

ψ=MPl, where MPl ≈ 2 × 1018 GeV. Further,
we assume that the fermions ψ are either stable or have a
total decay width Γ ≪ m2

ψ=MPl which ensures there is a
cosmological epoch where the ψ particles can become
nonrelativistic, decoupled from equilibrium, and interact
via long-range force mediated by the χ field. In particular,
we require that the annihilation cross section Γψψ→χχ ≪ H.
During a RD era, gravity alone only allows for logarith-

mic growth of density perturbations whereas in an IMD era,
gravitational forces cause δðx; tÞ ¼ δρ=ρ̄ to grow linearly
with scale factor [17], i.e., δ ∝ a. In either case, the presence
of a long-range “fifth force” stronger than gravity causes the
fluctuations to grow at a much faster rate. We note that
the scalar force does not couple to the mass density, but
to the number density of ψ . The strength of this force can
be characterized by its relative strength with gravity,
ξ≡ yMPl=mψ ≫ 1. This causes fluctuations Δðx; tÞ ¼
Δnψ=n̄ψ to grow more rapidly so long as the ψ is decoupled
from radiation so that pressure can be neglected.
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In Fourier space, the growth of these perturbations is
described by the system of coupled equations [1,5,18–20],

δ̈k þ 2H _δk −
3

2
H2ðΩradδk þ ΩψΔkÞ ¼ 0 ð2Þ

Δ̈kþ 2H _Δk−
3

2
H2½ΩradδkþΩψð1þ ξ2ÞΔk� ¼ 0; ð3Þ

where Ωrad ¼ ρrad=ðρrad þ ρψÞ and Ωm ¼ ρψ=ðρrad þ ρψÞ
are the radiation and matter components respectively such
that Ωrad þ Ωm ¼ 1 and H is the Hubble parameter
H ≡ _a=a. Assuming that radiation and the ψ particles
are the only relevant energy components, then the time
dependence of the energy fractions are

Ωrad ¼
1

1þðt=teqÞs
; Ωψ ¼

1

1þðteq=tÞs
; ð4Þ

where teq is the matter-radiation equality time when the ψ
component comes to dominate and s is defined as the
power a ∝ ts such that s ¼ 1=2 for radiation domination
and s ¼ 2=3 for matter domination. We can examine the
solution of Eq. (3) in the limit that ξ ≫ 1 in either era

Δk ∝ ap; p¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð1þ ξ2Þ
p

RD
1
4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24ð1þ ξ2Þ

p
−1Þ MD

ð5Þ

where p can be much larger than 1. This growth continues
until the density contrast Δk enters the nonlinear regime
when Δk ≃ 1.
Our discussion of the evolution of the overdensities and

their subsequent collapse will closely follow the work of
Dalianis and Kouvaris [14]. Rather than utilizing the
formalism of induced GWs from a decaying gravitational
potential with time, Ref. [14] applies an alternative analytic
approach based on the Zel’dovich approximation for the
nonlinear evolution of density perturbations [21].
As described by Zel’dovich, deviations from spherical

symmetry of a halo of pressureless, self-gravitating gas will
cause instability, leading to flattening in one particular
direction. These objects, often referred to as Zel’dovich
pancakes, may lead to the formation of black holes if the
final configuration satisfies hoop conjectures [22,23]. If
not, the system will continue to collapse and go through
phase crossings and oscillations which lead to a virialized
halo. We will be applying the Zel’dovich approximation
instead to a system of pressureless gas interacting via a
Yukawa interaction. Functionally, a Yukawa interaction is
identical to gravity, with both being having 1=r potentials.
Thus, we expect the Zel’dovich approximation to hold
similarly in our scenario.
In the absence of an asymmetry in the ψ component, this

leads to the destruction of the halo itself through ψ̄ψ
annihilation. This process halts the further emission of

GWs and, in the case of an IMD era, reestablishes the
radiation era. Our approach, similar to Refs. [14,24] will
only focus on the nonlinear collapse process within the
Zel’dovich approximation, and the gravitational signal
which may exist due to the relaxation process will be left
for future work.
Within the Zel’dovich formalism the coordinate of a

particle is written as

ri ¼ aðtÞqi þ bðtÞpiðqiÞ ð6Þ

where aðtÞ is the usual scale factor encoding the expansion
of the Universe, qi is the comoving coordinate, bðtÞ is the
growing mode describing the instability of the overdensity,
and pi are deviation vectors that depend on the initial
perturbation.
To study the motion of a group of particles around qi, a

deformation or strain tensor Dik is defined as

Dik ¼
∂ri
∂qk

¼ aðtÞδik þ bðtÞ ∂pi

∂qk
¼ diagða − αb; a − βb; a − γbÞ ð7Þ

where we have chosen a basis so that ∂pi=∂qk is diagonal,

∂pi

∂qk
¼ −diagðα; β; γÞ: ð8Þ

The mass contained within the Lagrangian volume is

Mψ ¼
Z

ρψd3r ¼ ρ̄ψa3
Z

d3q ð9Þ

where the difference between the two right-most expres-
sions is the Jacobian determinant, i.e.,

ρψða − αbÞða − βbÞða − γbÞ ¼ ρ̄ψa3: ð10Þ

We will also assume that the initial deviations are small, so
that the perturbations are nearly spherical. Specifically,
when a perturbation of size q and wave number k ¼ q−1

enters the horizon at tq,

aðtqÞq ¼ H−1ðtqÞ; ð11Þ

we assume that αbðtqÞ=aðtqÞ ≪ 1, βbðtqÞ=aðtqÞ ≪ 1, and
γbðtqÞ=aðtqÞ ≪ 1 so that we can ensure that the entire
ellipsoid is within the Hubble volume. To leading order, the
density contrast is given by [14,24]

δL ≡
�
ρψ − ρ̄ψ

ρ̄ψ

�
L

¼ ðαþ β þ γÞ b
a
: ð12Þ

Note that for b > 0, we have δL > 0 if and only if
αþ β þ γ > 0. As discussed previously, perturbations at
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most grow linearly with scale factor. The presence of a
long-range scalar force enhances this growth and so, the key
assumption of this Letter is that δL ∝ ap, p ≥ 1. Crucially,
the p ¼ 1, s ¼ 2=3 should reproduce precisely the work of
Ref. [14], which we shall demonstrate later.
Under this assumption, Eq. (12) implies that b ∝ apþ1

and therefore grows faster than the scale factor. The
perturbation will collapse along at least one of the three
axes. Without loss of generality we assume that

α> 0; −∞< γ ≤ β≤ α<∞; αþβþ γ> 0: ð13Þ
Additionally, we can determine the timescale tq utilizing
Eqs. (9) and (11) to give

tq ¼ 2sGMψ

�
1þΩradðtqÞ

ΩψðtqÞ
�

ð14Þ

where ΩX ¼ ρX=ρcrit. The horizon entry timescale is only
one of three important events in our scenario. After entering
the horizon, the perturbation grows until reaching some
maximum size at tmax. The overdensity subsequently
collapses, at tcol, due to the dominant scalar force. In this
Letter, we will only examine the effects of scalar-induced
collapse, though scalar cooling might dramatically decrease
the time needed for the halo to collapse [4,25].
The derivation of tmax and tcol follows a similar meth-

odology as in Ref. [14] the details of which have been
included in the Supplemental Material [26]. We find that

tmax ¼
�

αþ β þ γ

ðpþ 1ÞαδLðtqÞ
�

1=ps
tq ð15Þ

and

tcol ¼ ðpþ 1Þ1=pstmax: ð16Þ
The deviations α, β, γ are determined by the

Doroshkevich probability function as given by Ref. [27],

FDðα;β;γ;σ3Þ

¼−
27

8
ffiffiffi
5

p
πσ63

ðα−βÞðβ− γÞðγ−αÞ

×exp

�
−

3

5σ23

�
ðα2þβ2þ γ2Þ−1

2
ðαβþβγþ γαÞ

��
ð17Þ

where α≥ β≥ γ. The probability function is normalized to 1,Z
∞

−∞
dα

Z
α

−∞
dβ

Z
β

−∞
dγFDðα; β; γ; σ3Þ ¼ 1: ð18Þ

We will denote the standard deviation of δLðtqÞ as σ, given
explicitly as

σ2 ¼ hδ2LðtqÞi ¼ hðαþ β þ γÞ2i
�
b
a

�����
t¼tq

¼ 5σ23: ð19Þ

For this expression, we fixed the normalization such that
bðtÞ=aðtÞ ¼ ½aðtÞ=aðtqÞ�p. In addition to our restrictions
[Eq. (13)] we will also require that the maximum expansion
time tmax is larger than the time of entry tq. This defines a
subspace S,

0 < α < ∞

−
α

2
½1 − ðpþ 1Þσ� < β < α

−β − α½1 − ðpþ 1Þσ� < γ < β ð20Þ

over which we will limit our calculations.
The stochastic GW background is traditionally charac-

terized by the normalized energy density,

ΩGWðt; fÞ≡ 1

ρcrit

dρGW
d ln f

: ð21Þ

Following a framework similar to Ref. [14], the present day
GW energy density fraction reads as

ΩGWðt0; f0Þ ¼
1

ρcritðt0Þ
4πG
5c5

Z
S
d3α

XN
n¼1

1

1þ zn

×
X
ij

j
˜
Q
⃛ n

ij½2πf0ð1þ znÞ�j2

× ½2πf0ð1þ znÞ�
�
4π

3
q3
�

−1

× FDðα; σÞΘ½tCO − tcolðαÞ�: ð22Þ

where the sum is over partitioned time intervals from the

initial time to the final time of emission and
˜
Q
⃛

ij is the
Fourier transform of the third time derivative of the
quadrupole moment. For notational simplicity, we have
introduced the vector α ¼ ðα; β; γÞ. The Heaviside function
enforces the condition that collapse occurs before some
“cut-off time.” In the context of a RD era, this time could
correspond to the lifetime of the constituent ψ particles
where in the IMD era tCO is simply the time when radiation
domination is reestablished.
In Eq. (22), we have assumed that the mass distribution

of overdensities is monochromatic for simplicity. The
precise nature of the mass distribution resulting from
long-range forces has yet to be determined, though it could
possibly follow the Press-Schechter distribution which
follows from gravitational forces [4,28].
As in Ref. [14], we will assume that all of the GWs are

emitted in a single interval, i.e., N ¼ 1. Partitioning the
interval was motivated by the fact that GWs emitted in
different subintervals will be redshifted different amounts
as they propagate. For simplicity, we assume that the GWs
are emitted instantaneously at tcol. In view of the fact that
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tcol ¼ ðpþ 1Þ1=pstmax, with p ≥ 1, we see that this
approximation not only is reasonable, but becomes better
as p increases. In this approximation the final expression
for ΩGWðt0; f0Þ is
ΩGWðt0; f0Þ

¼ 2πf0
ρcritðt0Þ

�
4π

3
q3
�

−1 4πG
5c5

×
Z
S
d3α

X
ij

j
˜
Q
⃛

ijf2πf0½1þ zcolðαÞ�gj2

× f2πf0½1þ zcolðαÞ�gFDðα; σÞΘ½tCO − tcolðαÞ�: ð23Þ
Here, the redshift zcol is related to the collision timescale
through

1þ zcol ¼
1þ zCO
tscol

�
3s2

8πGρCO

�
s=2

ð24Þ

where zCO is the redshift at TCO and ρCO ¼ π2g�T4
CO=30.

We may also use these quantities to express the q, the
comoving radius of the perturbation at the time of horizon
entry, tq [14],

q−1ðM;TCOÞ ¼
�
3Mð1þ zCOÞ3

4πρCO

�−1=3

≃ 1.2× 1010 Mpc−1
�

TCO

1010 GeV

�1
3

�
M
M⊙

�
−1
3

ð25Þ
where zCO was determined using conservation of entropy.
Our selection of TCO will be informed by the Heaviside
function in Eq. (23). In particular,

TCO ≲ 0.2 GeV

ð1þ ΩradðtqÞ
Ωψ ðtqÞ Þ

1=2

�
Mψ

M⊙

�
−1=2

�
g�

106.75

�
−1=4

×

�
ασ

αþ β þ γ

�
1=ð2psÞ

: ð26Þ

In the RD case, Ωrad ≫ Ωψ greatly restricts possible values
of TCO.
Fundamental to Eq. (23) is the mass quadruple moment.

We have included a full derivation of Qij in the
Supplemental Material [26]. For simplicity, we will simply
present the Fourier transform:

˜
Q
⃛

iiðωÞ ¼
1

2π

Z
t2

t1

Q
⃛

iiðtÞe−iωt dt

¼ 2M
30πðpþ 1Þs

t2ð1−sÞq

t2psmax
½ApsviðαÞtpsmaxI1ðt1; t2;ωÞ

− BpswiðαÞI2ðt1; t2;ωÞ� ð27Þ

where

I1ðt1; t2;ωÞ ¼
Z

t2

t1

tðpþ2Þs−3e−iωt dt;

I2ðt1; t2;ωÞ ¼
Z

t2

t1

t2ðpþ1Þs−3e−iωt dt; ð28Þ

and the expressions for the constants Aps, Bps and the
vectors vðαÞ and wðαÞ are defined alongside their deriva-
tion in the Supplemental Material [26]. The square of
Eq. (27) with ðt1; t2Þ → ðtmax; tcolÞ, andω→ 2πf0ð1þ zcolÞ,
completes our derivation of ΩGWðt0; f0Þ.
Estimating ΩGWðt0; f0Þ requires numerical integration

over ðα; β; γÞ subject to the restrictions specified in
Eq. (20). To begin, Fig. 1 illustrates the enhanced amplitude
resulting from varying values of p in an IMD era. The
enhancement of the peak signal Ωpeak

GW ≡ΩGWðt0; fpeakÞ is
quite dramatic, even for modest values of p > 1, with p ¼
1 being consistent with the result obtained in Ref. [14]. We
note that the sizable enhancement may conflict with
indirect bounds derived for the integrated quantity, ΩGW ≡R
ΩGWðfÞd ln f [29–31].
Given the complexity of ΩGWðt0; f0Þ, we can determine

an approximate parametrization of Ωpeak
GW and fpeak after

computing the full signal for various combinations of
parameters. We select a parametrization of the form,

Ωpeak
GW ≈Ωpeak

GW;0σ
δA=p

�
p
3

�
αA
�

TCO

104 GeV

�
βA

×

�
M

10−12M⊙

�
γA
�
ΩradðtqÞ=ΩψðtqÞ

100

�
εA ð29Þ

FIG. 1. The GW signal for varying p in an intermediate matter
dominated era. Here, we take TCO ¼ 104 GeV, σ ¼ 10−1. Addi-
tionally, we assume a monochromatic mass function such that all
the overdensities have mass Mψ ¼ 10−12M⊙. Sensitivity curves
for LISA [32], DECIGO [33,34], and BBO [35] are shown.
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and

fpeak ≈ fpeak;0

�
p
3

�
αf
�

TCO

104 GeV

�
βf

×

�
M

10−12M⊙

�
γf
�
ΩradðtqÞ=ΩψðtqÞ

100

�
εf ð30Þ

where the coefficients for each formula are presented in
Tables I and II, respectively.
In either era, the peak frequency at emission corresponds

roughly to femit
peak ∼ 1=tmax. For a RD era, illustrated in

Fig. 2, there is a notable suppression in amplitude com-
pared with the IMD case. We also note in this new context
that δ ∝ ap, p ≥ 1 always exceeds the logarithmic growth
enabled by gravity only during a radiation era.
The uniqueness of the long-range scalar forces in this

scenario can be deduced in many ways. If the evolution of
the Universe is known to have been RD from reheating
until big bang nucleosynthesis, the presence of a signal of
the type featured in Fig. 2 can only be the result of the
presence of an additional long-range scalar force. Without
knowledge of the precise evolution of the Universe, we note
that the infrared oscillations for the RD are suppressed as
compared with the IMD case. The damping of these
oscillations only occurs for variations in p which helps
reduce the degeneracy within our set of parameters.

The GW spectrum calculated scales as

ΩGWðt0; f0Þ ∝
(
f0 for f0 ≪ 1

f−10 for f0 ≫ 1
ð31Þ

as also demonstrated in Ref. [14]; however, there is reason
to potentially doubt this scaling far from the peak ampli-
tude. By examining a finite time interval, ½tmax; tcol�, we
essentially are windowing the quadrupole moment with a
step function. The net result leads to a Fourier transform
proportional to a constant in the IR, and scaling as 1=ω2 in
the UV regardless of the functional form of QijðtÞ.
Furthermore, this result is inconsistent with the expectation
that the GW amplitude should scale as ω3 for small
frequencies during emission during a RD era [44].
While the solution near the peak is reliable, in future, it
would be advantageous to investigate scaling behavior
through alternative methods including numerical simula-
tions and cosmological perturbation theory.
In this Letter, we investigated the gravitational waves

produced from the evolution of nonspherical density
perturbations in the presence of a long-range scalar force.
We consider the scenario where heavy, nonrelativistic
fermions interact via an attractive Yukawa interaction.
This force, which can be significantly stronger than gravity,
causes structure to form rapidly. The subsequent collapse of
these aspherical overdensities, which could lead to PBHs,

TABLE I. Coefficients for parametrization of Ωpeak
GW .

Ωpeak
GW;0 αA βA γA δA εA

MD 1.4 × 10−7 5 4=3 2=3 1 0

RD 4.4 × 10−9 7 1 1=2 p=5 −1=2

TABLE II. Coefficients for parametrization of peak frequency
fpeak.

fpeak;0 (Hz) αf βf γf εf

MD 1.1 × 10−2 5=6 1=3 −1=3 0

RD 2.0 × 10−3 2=5 0 −1=2 −1=2

FIG. 2. The GW signal across a broad range of frequencies with varying p, during a radiation dominated era. In all cases σ ¼ 10−1 and
Ωrad=Ωψ ¼ 100. Again, we assume a monochromatic mass distribution. The masses and cut-off temperatures are (left) 10−2M⊙ and
10−2 GeV, (center) 10−12M⊙ and 104 GeV, (right) 10−21M⊙ and 109 GeV, respectively. Sensitivity curves for PTAobservations [36–39],
SKA [40,41] LIGO [42], ET [43], LISA [32], DECIGO [33,34], and BBO [35] are shown.
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has a nonvanishing quadrupole moment allowing for the
emission of GWs. This signal, which fits inside the
sensitivity curves of many future GW observatories, can
be significantly stronger than the gravity-only scenario and
would be distinguishable from other signals which occur
during a RD era [45–48]. If the halos form but do not
collapse into black holes (due to long cooling timescales),
the resulting density perturbations can help seed structure
formation in a matter dominated era. For the parameters we
discuss, the effect would be limited to extremely small
length scales, but some generalizations of our mechanism
can have implications for large-scale structure formation.
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