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We study the comoving curvature perturbation R in the single-field inflation models whose potential
can be approximated by a piecewise quadratic potential VðφÞ by using the δN formalism. We find a
general formula for Rðδφ; δπÞ, consisting of a sum of logarithmic functions of the field perturbation δφ
and the velocity perturbation δπ at the point of interest, as well as of δπ� at the boundaries of each
quadratic piece, which are functions of ðδφ; δπÞ through the equation of motion. Each logarithmic
expression has an equivalent dual expression, due to the second-order nature of the equation of motion
for φ. We also clarify the condition under which Rðδφ; δπÞ reduces to a single logarithm, which yields
either the renowned “exponential tail” of the probability distribution function of R or a Gumbel-
distribution-like tail.
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Introduction.—The primordial curvature perturbation on
comoving slices R originates from the quantum fluctua-
tions of the inflaton φ during inflation [1–6]. In linear
perturbation theory,R ¼ −ðH= _φÞδφ [7,8], where δφ is the
field perturbation on spatially flat slices. The observed
curvature perturbation is Gaussian and has a nearly scale-
variant power spectrum PR of order 10−9 on scales greater
than or around 10 Mpc [9,10]. However, on small scales,
PR is not well constrained due to nonlinear astrophysical
processes. Thus, PR might be greatly enhanced on small
scales, which could lead to interesting phenomena, for
instance, the formation of primordial black holes (PBHs)
[11–16] and induced gravitational waves (GWs) [17–24].
In such models, the enhanced power spectrum is often
accompanied byR in the form of nonlinear functions of δφ,
which can be calculated by the δN formalism.
The δN formalism [25–27] connects the comoving cur-

vature perturbation R to the field perturbation δφ and the
velocity perturbation δπ, which are quantum fluctuations
evaluated on spatially flat slices on superhorizon scales. As
the Hubble patches separated by superhorizon scales can be
treated as casually disconnected “separate universes,” the
local expansion rate in such a patch is randomly distributed
according to its probability distribution function (PDF).
Along a trajectory starting from an initial spatially flat slice
to a final comoving slice, the difference between its total
expansion, or the e-folding number, and the fiducial total
expansion is equal to the curvature perturbation on the

final comoving slice in this patch, i.e., R ¼ δNðδφ; δπÞ.
For slow-roll inflation, as the non-Gaussianity is small, and
δπ is negligible, we have the perturbative series R ¼
ð∂N=∂φÞδφþ ð1=2Þð∂2N=∂φ2Þδφ2 þ � � � [28].
However, even a small non-Gaussianity can significantly

change the tail of the PDF of R; thus, it greatly alters, for
instance, the PBHmass function as the formation of compact
objects like PBHs depends sensitively on the tail of the
PDF of R [29–40]. Recently, it was discovered that a fully
nonlinear logarithmic relation RðδφÞ ¼ −ð1=λÞ ln½1þ
OðδφÞ� can give a non-Gaussianity of Oð1Þ in, e.g., ultra-
slow-roll (USR) inflation [41,42], inflation near a bump
[43,44], the curvaton scenario [45], inflation with a step-up
potential [46,47], etc. This logarithmic relation generates an
“exponential tail” of the PDF PðRÞ ∼ expð−λRÞ, similar to
what is found in the stochastic approach [48–55]. The
logarithmic relation appears to be quite common among
many inflationary models, but its origin has not been
clarified. In addition, the coefficients aswell as the arguments
of the logarithms are different for different models.
Therefore, it is worth investigating the mechanism of
generating such logarithmic relations or exponential tails,
and how their detailed forms depend on models.
Logarithmic duality.—We consider a piecewise potential

consisting of two parabolas:

V1ðφ < φ�Þ ¼ V0 þ
m2

1

2
φ2; ð1Þ
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V2ðφ > φ�Þ ¼ V0 þ
m2

1

2
φ2� −

m2
2

2
ðφ� − φmÞ2

þm2
2

2
ðφ − φmÞ2; ð2Þ

where φ� is the junction point of the two potentials, and φm
is the minimum of V2ðφÞ. For simplicity, we assume the
origin of φ is at the maximum or minimum of V1ðφÞ, with
φ� > 0 or φ� < 0, respectively. Then, VðφÞ is a monotonic
function around φ�. Inflation ends at φf in the second stage,
i.e., φf > φ�. A schematic figure of this piecewise potential
is shown in Fig. 1. We consider a continuous VðφÞ, but
there may be discontinuity in V 0ðφÞ at φ�, unless

φm ¼
�
1 −

m2
1

m2
2

�
φ�: ð3Þ

Although we only consider two segments here, an exten-
sion to more segments is straightforward, similar to what is
done in Ref. [56].

The equation of motion of the inflaton field is
φ̈þ 3H _φþ ∂V=∂φ ¼ 0. It is convenient to define the
e-folding number counted backwards in time from the
end of inflation,

N ¼
Z

te

t
Hdt; ð4Þ

and use it as the time variable. We assume that in the range
of our interest, the first slow-roll parameter ϵ≡ − _H=H2 is
negligible, so the Hubble parameter may be approximated
by a constant value 3H2 ≈ 8πGV0. The second slow-roll
parameters η≡m2

1=ð3H2Þ and η̃≡m2
2=ð3H2Þ are con-

stants, but we do not assume them to be small. Then,
the equations of motion for φ are constant-coefficient
second-order differential equations:

d2φ
dN2

− 3
dφ
dN

þ 3ηφ ¼ 0 ðφ ≤ φ�Þ; ð5Þ

d2φ
dN2

− 3
dφ
dN

þ 3η̃ðφ − φmÞ ¼ 0 ðφ > φ�Þ: ð6Þ

Note that N ¼ 0 is at the end of inflation, while we assign
N ¼ N� at φ ¼ φ�. See Fig. 1.
Setting φ ∝ eλN , the characteristic root λ of (5) is

found as

λ2 − 3λþ 3η ¼ 0; ⇒ λ� ¼ 3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 12η

p
2

: ð7Þ

For η < 3=4, which we assume in this letter, we have
λ− < λþ. The general solution of φ is

φðNÞ ¼ cþeλþðN−N�Þ þ c−eλ−ðN−N�Þ; ð8Þ

where c� are constants. We define the field velocity as
π ≡ −dφ=dN, so its sign is the same as dφ=dt. Then,

−πðNÞ ¼ λþcþeλþðN−N�Þ þ λ−c−eλ−ðN−N�Þ: ð9Þ

The solutions (8) and (9) are valid for φ ≤ φ�. Then, the
coefficients c� are determined as

c� ¼∓ π� þ λ∓φ�
λþ − λ−

; ð10Þ

where π� is the field velocity at φ�. Combining (8) and (9),
and using (10), we have

π þ λþφ
π� þ λþφ�

¼ eλ−ðN−N�Þ; ð11Þ

π þ λ−φ

π� þ λ−φ�
¼ eλþðN−N�Þ: ð12Þ

FIG. 1. Schematic pictures of VðφÞ, which glues two parabolas
together at the junction point φ�, given by (1) and (2). The origin
is chosen at the local maximum (upper panel) or minimum (lower
panel) of V1ðφÞ, for m2

1 < 0 or m2
1 > 0, respectively. At φ�, the

potential is continuous, while its slope may not be. The e-folding
number defined in (4) is also labeled at φ, φ�, and φf .
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These equations can be used to express the e-folding
number N − N� in terms of ðφ; πÞ and π�,

N − N� ¼
1

λ�
ln

π þ λ∓φ
π� þ λ∓φ�

; ð13Þ

where π� is a function of ðφ; πÞ, determined by the equation
combining (11) and (12),

�
π þ λþφ
π� þ λþφ�

�
λþ ¼

�
π þ λ−φ

π� þ λ−φ�

�
λ−
: ð14Þ

We have two seemingly very different expressions for
N − N� in (13). But their equivalence can be easily shown
by (14). This is the origin of the logarithmic duality of the
curvature perturbation.
The δN formula can be obtained by subtracting the

fiducial e-folding number (13) from a perturbed version
with N → N þ δN, N� → N� þ δN�, φ → φþ δφ,
π� → π� þ δπ�, π → π þ δπ,

δðN − N�Þ ¼
1

λ�
ln

�
1þ δπ þ λ∓δφ

π þ λ∓φ

�

−
1

λ�
ln
�
1þ δπ�

π� þ λ∓φ�

�
: ð15Þ

The equivalence of the upper- and lower-sign formulas of
(15) is guaranteed by taking the perturbation of (14),

�
1þ δπ�

π� þ λþφ�

�
−λþ

�
1þ δπ�

π� þ λ−φ�

�
λ−

¼
�
1þ δπ þ λ−δφ

π þ λ−φ

�
λ−
�
1þ δπ þ λþδφ

π þ λþφ

�
−λþ

; ð16Þ

which also determines δπ� as a function of ðδφ; δπÞ at an
earlier stage.
For φ > φ�, the equation of motion is given by (6).

Introducing φ̃≡ φ − φm, it becomes exactly the same form
as (5) with tilded φ and η. With the junction point φ̃� ¼
φ� − φm where N ¼ N�, and the endpoint φ̃f ¼ φf − φm

where N ¼ 0, in parallel with the previous discussion, we
can calculate δN� of the second stage. The resulting
expression for the total δN is

R≡ δN ¼ δðN − N�Þ þ δN�; ð17Þ

where δðN − N�Þ is given by (15), and δN� by

δN� ¼
1

λ̃�
ln
�
1þ δπ�

π� þ λ̃∓φ̃�

�
−

1

λ̃�
ln
�
1þ δπf

πf þ λ̃∓φ̃f

�
;

ð18Þ

with λ̃� being the characteristic roots given by (7) with
η → η̃. Equation (17) tells us that the curvature perturbation

is the sum of logarithms of ðδφ; δπÞ, as well as δπ at the
junction (δπ�) and at the endpoint (δπf), where δπf is a
function of δπ�, via

�
1þ δπf

πf þ λ̃þφ̃f

�
−λ̃þ

�
1þ δπf

πf þ λ̃−φ̃f

�
λ̃−

¼
�
1þ δπ�

π� þ λ̃−φ̃�

�
λ̃−
�
1þ δπ�

π� þ λ̃þφ̃�

�
−λ̃þ

: ð19Þ

Note that δπ� is a function of ðδφ; δπÞ via (16). When
evaluating (17), the upper or lower signs in (15) and (18)
can be chosen independently, of which the equivalence is
guaranteed by (16) and (19), respectively. We call this
equivalence the logarithmic duality, and this is the main
result of our letter.
The main formula (17), together with (15) and (18),

contains functions δπ�ðδφ; δπÞ and δπfðδφ; δπÞ, which are
determined by (16) and (19). In general, they can only be
solved numerically. However, Eq. (17) can be simplified
greatly if the inflaton is already in the attractor regime at the
boundaries. Except for the degenerate limit λþ ¼ λ− ¼ 3=2,
we have λþ > λ−; hence, the attractor solution is π ¼ −λ−φ.
Depending on the initial condition, the inflaton may already
be in the attractor regime atφ�. If so, the second factor on the
left-hand side of (16) ismuch larger than the first one.We can
approximately solve for δπ� to obtain

1þ δπ�
π� þ λ−φ�

≈
�
1þ δπ þ λ−δφ

π þ λ−φ

��
1þ δπ þ λþδφ

π þ λþφ

�
−λþ
λ−
:

ð20Þ

Similarly, if the inflaton is in the attractor regime at the end of
inflation, Eq. (19) becomes

1þ δπf
πf þ λ̃−φ̃f

≈
�
1þ δπ�

π� þ λ̃−φ̃�

��
1þ δπ�

π� þ λ̃þφ̃�

�
−λ̃þ
λ̃− :

ð21Þ

Substituting (20) and (21) into the upper-sign formulas of
(15) and (18), respectively, we find that the first terms in both
expressions for δðN − N�Þ and δN� are canceled, leaving the
lower-sign formulas without the contributions at the junction
and the endpoint. Summing up the resulting expressions, we
obtain

R ≈
1

λ−
ln

�
1þ δπ þ λþδφ

π þ λþφ

�
þ 1

λ̃−
ln

�
1þ δπ�

π� þ λ̃þφ̃�

�
:

ð22Þ

Apparently, Eq. (22) cannot be used when either λ− or λ̃−
is zero, i.e., the USR case. During the USR stage, the
inflaton cannot be in the attractor regime, and we have to
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use the upper-sign formula of (15) or (18). For example,
assuming the first stage is USR and the second stage ends in
the attractor regime, we obtain

R ≈ −
1

3
ln

�
1þ δπ�

π�

�
þ 1

λ̃−
ln

�
1þ δπ�

π� þ λ̃þφ̃�

�
; ð23Þ

where δπ� is expressed in terms of δφ via (16), which now
takes the form of a simple conservation law [57],

π þ 3φ ¼ π� þ 3φ�; ⇒ δπ� ¼ 3δφ: ð24Þ

Similarly, if the inflaton is in the attractor regime when it
reaches φ�, and the second stage is USR, we have

R ≈
1

λ−
ln
�
1þ δπ þ λþδφ

π þ λþφ

�
−
1

3
ln
�
1þ δπf

πf

�
: ð25Þ

As (19) gives δπf ¼ δπ� ≈ −λ−δφ� ¼ 0, the second term is
always negligible. We emphasize that, in general, once the
inflaton is in the attractor regime, the trajectory in the later
stages is unique. Therefore, whatever feature the potential
has in the following stage, it does not contribute to δN.
Actually, by checking (22) and (25), we see that except

for an extremely fine-tuned case of π� þ λ̃þφ̃� ≈ 0, the
contribution from the second stage is always negligible,
leaving

R ≈
1

λ−
ln

�
1þ δπ þ λþδφ

π þ λþφ

�
; ð26Þ

provided the inflaton is already in the attractor regime at φ�.
We note that under the assumption of a quadratic potential,
perturbations ðδφ; δπÞ follow exactly the same equations
for ðφ; πÞ, i.e., (11) and (12). Therefore, ðδπ þ λþδφÞ=ðπ þ
λþφÞ is time independent, which can be calculated at any
moment, even in the attractor regime [58]. This implies that
we can calculate this quantity as if it were in the attractor
solution at φðNÞ for anyN as long as the scale is outside the
horizon, as was shown in [59] at the linear level. Thanks to
our new logarithmic formula, we now have a fully non-
linear version of it. Namely, we can replace π and δπ in (26)
with −λ−φ and −λ−δφ, respectively. As an explicit exam-
ple, see Fig. 2 [60].
Application to special cases.—Our formula leads to a

complicated form of Rðδφ; δπÞ in general, which can only
be calculated numerically. However, in some interesting
special cases, it is possible to obtain approximated results.
In addition, we can search for analytically solvable cases
which have not been studied before by our new formula.
The first example is the slow-roll inflation, λ− ≈ η and

λþ ≈ 3 − η with jηj ≪ 1. In this case, the inflaton is deep in
the attractor regime at φ�. This means that all the boundary
terms are negligible if we use (26),

R ≈
1

η
ln

�
1þ 3δφ

π þ 3φ

�
≈
1

η
ln

�
1 − η

δφ

π

�
: ð27Þ

In the second step, we use the slow-roll equation of motion
π ≈ −ηφ. As δφ=φ ≪ 1, it can be expanded as a perturba-
tion series

R ≈Rg þ
3

5
fNLR2

g þ � � � ; ð28Þ

which yields the standard slow-roll result Rg ¼ −δφ=π
with fNL ¼ −5η=6 [28].
The second example is USR inflation, where λ− ¼ 0 and

λþ ¼ 3, while inflation ends at φ�. Then, only the first term
in (23) remains, giving [41,61]

R ¼ −
1

3
ln

�
1þ δπ�

π�

�
¼ −

1

3
ln

�
1þ 3δφ

π þ 3ðφ − φ�Þ
�
;

ð29Þ

where in the second step, Eq. (24) is used.
If the USR stage is followed by a slow-roll stage, we

have λ− ¼ 0, λþ ¼ 3, λ̃− ¼ η̃, and λ̃þ ¼ 3 − η̃. Then,
Eq. (23) gives

R ≈ −
1

3
ln

�
1þ δπ�

π�

�
þ 1

η̃
ln

�
1þ δπ�

π� þ ð3 − η̃Þφ̃�

�
: ð30Þ

The general case when these two terms are comparable is
complicated. However, it can be simplified in the limiting
cases when one of the terms dominates.

FIG. 2. Phase portrait of the equation of motion (5) near a bump
with η ¼ −1. The initial conditions for the blue, orange, green,
and red curves are πi ¼ 10, 11.4, 13, 15 at φi ¼ −3 (in units of
H), respectively. The diagonal dotted line is the attractor solution
π þ λ−φ ¼ 0. According to the conservation of ðδπ þ λþδφÞ=
ðπ þ λþφÞ, the superhorizon curvature perturbation (26) at the
red circle can be evaluated at a later time when φ is already in the
attractor regime (black circle), which can be approximately
evaluated at an earlier moment in the attractor trajectory (green
circle).
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When V 0ðφ�Þ is continuous, which we call a smooth
transition [41], we have φ̃� ¼ φ� − φm ¼ 0 from (3), which
gives

R ≈
�
−
1

3
þ 1

η̃

�
ln

�
1þ δπ�

π�

�
≈
1

η̃
ln

�
1þ 3δφ

π�

�
: ð31Þ

We see that it is similar to the slow-roll result (27). The only
difference is the coefficient in front of δφ inside the
logarithm. This means that in a smooth transition R is
dominated by the contribution from the second slow-roll
stage, which generates the same perturbation series as (28)
with Rg ¼ ð3=η̃Þðδφ=π�Þ and fNL ¼ −5η̃=6.
The opposite limit is when the discontinuity in V 0ðφ�Þ is

large, i.e., ð3 − η̃Þjφ� − φmj ≫ π�, which we call a sharp
transition [32,41]. Now, the δπ�-term in the second loga-
rithm of (30) is very suppressed and always negligible
compared to the first term, yielding

R ≈ −
1

3
ln

�
1þ δπ�

π�

�
: ð32Þ

Thus, the USR result (29) is recovered in this limit.
Recently, several papers on inflation with a bumpy

potential have appeared [43,44]. To realize such a case,
we assume that inflation is already in the attractor regime
at φ� with m2

1 < 0. As we commented, the total δN is
approximated by (26). A nonvanishing positive field
velocity π in the denominator is necessary if the inflaton
comes from the other side (φ < 0) of the bump. This means
π must deviate from the attractor solution, π ¼ −λ−φ, in the
vicinity of the top of the bump, as is shown clearly in the
phase portrait in Fig. 2. Taking into account the conserva-
tion of ðδπ þ λþδφÞ=ðπ þ λþλφÞ on superhorizon scales,
our result is in agreement with Refs. [43,44].
Besides the above examples, we find some interesting new

cases in which the e-folding numbers are analytically
solvable. This becomes possible if the conservation law
(14) can be algebraically solved for π�. As we discussed, it
can be easily solved in the USR case (λþ ¼ 3, λ− ¼ 0). The
other algebraically solvable cases require that λþ=λ− ¼ m=n,
where m; n ∈ Z, m > jnj, and maxðm;m − nÞ ≤ 4. For
instance, we have λ− ¼ −3=2 and λþ=λ− ¼ −3 for
η ¼ −9=4, so (11) and (12) give a fourth-order algebraic
equation for π�,
�
π� þ

9

2
φ�

�
3
�
π� −

3

2
φ�

�
¼

�
π þ 9

2
φ

�
3
�
π −

3

2
φ

�
:

ð33Þ

This is algebraically solvable, soRðδφ; δπÞ given by (17) has
an analytical (though complicated) expression even if the
inflaton is not in the attractor regime on the boundaries.
Interestingly, Eq. (33) has a similar form as the algebraic
equation derived in the curvaton scenario [45]. All similar

analytically solvable cases are listed in Table I. However, we
did not consider the case of the degenerate characteristic
roots λ− ¼ λþ ¼ 3=2 nor the complex characteristic roots
λ� ¼ ð3=2Þ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3η − 9=4

p
with η > 3=4. We will leave

studies of these situations for future work.
Discussion.—In this letter, we studied single-field infla-

tion with a piecewise quadratic potential and calculated the
curvature perturbation R by using the δN formalism. We
found that logarithms universally appear in the expression
for R, and two seemingly different expressions involving
logarithms from each segment of the quadratic potential are
equivalent to each other, as given by (15) and (18). We call
this equivalence the logarithmic duality. Although we
focused on the two-stage case, it is straightforward to
generalize our result to potentials with more quadratic
pieces.
The total curvature perturbation R is the sum of such

logarithms from all stages. However, in the case when the
inflaton is already in the attractor regime at the first
boundary, the contributions to δN from the later stages
are negligible because the trajectory is unique afterwards,
leaving a single logarithm of the local field perturbation
(26). Otherwise, if the nonattractor solution is still impor-
tant on the boundary, like in the USR case, the boundary
term can contribute or even dominate the curvature
perturbation.
When one of the logarithms dominates, the PDF of R

can be calculated easily from the Gaussian PDF of δφ.
Taking Eq. (26) as an example, we obtain

PðRÞ ¼ jλ−φjeλ−Rffiffiffiffiffiffi
2π

p
σδφ

exp

�
−
φ2ðeλ−R − 1Þ2

2σ2δφ

�
ð34Þ

where σδφ is the root mean square of δφ. If λ− < 0, the PDF
of R has an exponential tail of around eλ−R for R > 0. In
the sharp-ended USR case, λ− ¼ 0, we should use the dual

TABLE I. Special cases when R can be analytically derived.
The number in the left-most column indicates the order of the
algebraic equation to be solved. The right-most column shows the
tail behavior of the PDF forR > 0 when the inflaton is already in
the attractor regime at φ�, where c2’s are model-dependent
coefficients.

Order η λ− λþ PDF ∝

Slow roll η η 3 − η Gaussian
USR 0 0 3 expð−3RÞ
3 −6 −3 6 expð−3RÞ
4 −9=4 −3=2 9=2 expð−3R=2Þ
4 12=25 3=5 12=5 expð−c2e6R=5Þ
3 9=16 3=4 9=4 expð−c2e3R=2Þ
2 2=3 1 2 expð−c2e2RÞ
3 18=25 6=5 9=5 expð−c2e12R=5Þ
4 36=49 9=7 12=7 expð−c2e18R=7Þ

PHYSICAL REVIEW LETTERS 131, 011002 (2023)

011002-5



expression (32), which gives PðRÞ ∼ e−3R [61]. For
positive λ−, the suppression by the second exponent in
Eq. (34) becomes important, which displays a Gumbel-
distribution-like tail PðRÞ ∼ expð−c2e2λ−RÞ.
The PBH formation is very sensitive to the tail of PðRÞ.

Recently, various groups have considered the PBH for-
mation for exponential-tail PDFs [61–64]. It was found that
the amplitude, central mass, and shape of the PBH mass
function changes significantly even in the simple single-
logarithm case. On the other hand, the induced GWs are
believed to be only mildly dependent on non-Gaussianities,
though only perturbative calculations have been done so
far [65–71]. We may find a profound effect in the PBH
formation and induced GWs when plural logarithms
equally contribute to the curvature perturbation.
The exponential tail we found here is analogous to the

tail found in the stochastic δN formalism based on
stochastic inflation [72–74]. For instance, in Ref. [53],
the effect of quantum diffusion was studied in detail when
there is an intermediate USR stage, which should coincide
with our result in the drift-dominated limit. Unfortunately,
two exponents seem to differ from each other. We suspect
that the “absorbing boundary condition” adopted in the
stochastic δN formalism in Ref. [53] cannot reflect how the
USR stage ends, which is crucial in determining the final
δN. This is an interesting issue to be resolved in the future.
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