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1 Introduction

The inflation theory [1–6], originally introduced to resolve the problems of the Big Bang
cosmology, is currently accepted as a part of the standard cosmological model. In particular,
slow-roll (SR) inflation driven by a single scalar field produces primordial fluctuations,
which are nearly scale-invariant and almost Gaussian, consistent with the observed cosmic
microwave background (CMB) temperature anisotropies [7, 8]. Hence, single field SR inflation
is considered to be a strong candidate as an inflation model. However, the specific mechanism
causing inflation is still unknown, and various inflation models have been proposed within
the framework of SR inflation (e.g. [1, 9–12]). Even among the canonical single scalar field
models, diverse types of inflaton potentials have been studied so far. Especially at smaller
scales than the CMB scale (k ∼ 0.002Mpc−1), there are only a little observational constraints
and many possible inflation scenarios are allowed.
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Inflationary models associated with primordial black holes (PBHs) [13–16] have been
intensively studied in recent years (e.g. ultra-slow-roll (USR) models [17–21]). PBHs are
black holes formed through the gravitational collapse of regions of high density fluctuations
above a threshold in the early universe. They are hypothetical objects but can play many
different roles in the history of the Universe depending on their mass (see [22–31] for recent
reviews). The density fluctuations originate in the curvature perturbation R generated during
inflation, and the probability of the realisations of large curvature perturbation must be
amplified by some mechanism for a sufficient abundance of PBH to be formed. The simplest
way to achieve this is to enhance the power spectrum (i.e. the variance) of the curvature
perturbation on a scale small compared to the CMB scale.

In general, however, the power spectrum alone does not completely fix how likely the
production of large amplitude curvature perturbations is. The probabilistic characteristics
of the random variable are determined solely by the power spectrum only when it follows a
Gaussian distribution. In discussing deviations from Gaussian distribution in the context of
primordial cosmology, higher-order correlators are often used. In particular, the non-gaussian
parameter fNL associated with the bispectrum has been discussed extensively [32–37]. While
SR inflation produces almost Gaussian curvature perturbations characterized by fNL ≪ 1,
the inflation models in which the SR condition is violated can produce relatively large fNL
(see e.g. [38–42]). It has been pointed out that the PBH abundance is very sensitive to
non-gaussianity in such cases (e.g. [43–58]).

The large and rare fluctuations that cause PBH formation cannot be precisely assessed
by perturbative methods alone such as the fNL parameter. To capture their nature, we can
use a powerful non-perturbative approach called the δN formalism [59–66]. This formalism
allows a direct conversion from the probability distribution function (PDF) of the scalar field
perturbation δφ to the PDF of R. It is known that in inflationary models leading to PBH
formation, an exponential tail appears in the PDF of R, which has a significant impact on
the PBH abundance [67–73] (see also stochastic approach [74–79]).

This paper focuses on a model where the inflaton potential has an upward step between
two SR regions [80–82]. Models with such an abrupt change have been studied extensively
(e.g. [67, 80–92]) and tend to be consistent with the CMB observations, as the transition takes
less time and does not affect much the SR inflaton dynamics on the CMB scale. Previous
studies of the upward step model calculated the PDF of R by ignoring the finite width of the
step and reported that the PDF has a hard cutoff at a certain value of R beyond which the
PDF is zero [81, 82]. In this paper, we take a step width ∆φ into consideration. We introduce
a smooth step whose first-order derivative is continuous, and investigate the probabilistic
features of the curvature perturbation using the classical δN formalism. We also discuss the
impact of the finite step width on the PBH abundance.1

We obtain two main results. The first reveals that a tail dependent on the step width ∆φ

appears in the PDF, and the cutoff feature disappears. In the zero-width limit ∆φ → 0, the
1Recently, there are active debates if the enhancement of the curvature power spectrum on the small scale

for PBH generation could significantly affect the power spectrum on the CMB scale due to the one-loop
correction, since ref. [93] raised this issue (see also [94]). There are some counter arguments and this is still
unsettled issue [95–106]. In particular, it is advocated that the loop correction can be sufficiently suppressed
by considering smooth transition between SR and USR [100–102]. We do not address this issue in the present
paper, but it gives another motivation for introducing the step width ∆φ that smooths the transition.
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tail becomes steeper and eventually the cutoff is reproduced. The complementary cumulative
distribution function is then calculated, showing that the step width ∆φ has a significant
impact on the estimate of PBH abundance. The second is the discovery of a PDF with very
high asymmetry. At certain scales exiting the Hubble horizon before the step, R cannot take
large negative values and the PDF becomes asymmetric. The scale that is most asymmetric
is shown to correspond to the dip scale, where ⟨(R − ⟨R⟩)2⟩ and ⟨(R − ⟨R⟩)3⟩ are the smallest
compared to the other scales. By illustrating the spatial distribution realized with the highly
asymmetric PDF, we show that the fraction of low-density regions is smaller at the dip scale.

This paper is organized as follows. In section 2, we explain the details of our model in
which the inflaton potential includes an upward step between two SR regions. In section 3,
the background equation of motion is solved, and in section 4 we derive the relation between
the curvature perturbation R and the scalar perturbation δφ using the δN formalism. In
section 5, we compute the PDF and the CCDF of R and show that the exponential tail, which
depends on ∆φ, appears. In section 6 we show that the highly asymmetric PDF appears and
relate it to the dip scale. We then briefly discuss the implications of the highly asymmetric
PDF for the structure of the universe. Section 7 is devoted to conclusions.

2 Upward-step model

In this section, we describe the setup of our model. Let us consider a single-field inflationary
model with a scalar field ϕ,

S =
∫

d4x
√

−g

[
M2

pl
2 R − 1

2gµν∂µϕ∂νϕ − V (ϕ)
]

, (2.1)

where g is a determinant of the metric tensor gµν and V (ϕ) is a potential of the scalar
field. We consider a spatially flat Friedmann-Lemaître-Robertson-Walker background, ds2 =
−dt2 + a2(t)δijdxidxj , where a(t) is a time-dependent scale factor. From the above action,
we obtain two background equations of motion

3h2 = 1
2h2π2 + v , (2.2)

dπ

dn
+ v

h2 π + ∂φv

h2 = 0 , (2.3)

where we introduced dimensionless quantities, φ ≡ ϕ/Mpl, π ≡ dφ/dn, v ≡ V (ϕ)/V0 and
h ≡ MplH/

√
V0. V0 is an arbitrary reference point of the potential, H = ȧ/a is the Hubble

expansion rate and n is the number of e-folds defined by dn = Hdt. Without loss of
generality, we assume that φ moves from positive to zero along the potential and π is always
negative during inflation.

In our model, the potential v(φ) has an upward step-like feature between two slow-
roll regions,

v(φ) =


vsr1(φ) (φ ≥ φ1)
fstep(φ) (φ2 < φ < φ1)
vsr2(φ) (φ ≤ φ2)

, (2.4)
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Figure 1. (Left panel) Schematic figure of the potential (black solid line) and the scalar field (orange
balls). Two slow-roll (SR) potentials are connected by a smooth upward step with the width ∆φ. The
black, magenta and gray arrows represent the SR, step-climbing and relaxation phases, respectively.
(Right panel) Schematic figure of the background trajectory in the phase space. The scalar field
evolves from right to left in time, and experiences (i) the first SR stage, (ii) the step stage highlighted
by magenta shading, and (iii) the second SR stage. At the beginning of the second SR stage, the
trajectory deviates from the SR attractor (red dashed line), which is called the relaxation phase. For
reference, we superimposed the shape of the linear order power spectrum on the right panel and
indicated the positions of its peak and dip (red and blue stars).

where vsr1 and vsr2 are slow-roll (SR) potentials, which are generally different from each
other and satisfy vsr2(φ2) > vsr1(φ1) to have an upward step in between. The width of the
step region will be an important parameter

∆φ ≡ φ1 − φ2. (2.5)

For the upward step fstep, we employ quadratic functions

fstep(φ) =

A1 + B1(φ − φmin)2 (φc ≤ φ < φ1 : S1 region)
A2 + B2(φ − φmax)2 (φ2 < φ < φc : S2 region)

, (2.6)

where φc ≡ (φ1+φ2)/2 is the midpoint of the step region. φmin and φmax denote the minimum
and maximum of the quadratic potential, respectively. Requiring that the potential and its first
φ-derivative are continuous at φ = φc, φ1, and φ2, the six constants A1, A2, B1, B2, φmin, φmax
are thereby determined as shown in appendix A.

The left panel of figure 1 schematically shows our potential v(φ). We chose vsr1 and vsr2
so that their slopes are different before and after the upward step, for example, ∂φvsr1(φ1) >

∂φvsr2(φ2). The right panel of figure 1 schematically shows the background trajectory in the
phase space. Due to the presence of the upward step, there are three distinct stages of the
background evolution: (i) The first stage, φ ≥ φ1, is the first SR stage where the background
trajectory is on the SR attractor. (ii) The second, φ2 < φ < φ1, is the step stage. In the step
stage, the scalar field rapidly loses its kinetic energy and |π| becomes smaller than before the
step. (iii) The third, φ ≤ φ2, is the second SR stage. Since |π| is made smaller by the step,
the trajectory in the phase space is not on the SR attractor right after the scalar field finishes
climbing up the step. Therefore, after the step, a relaxation phase takes place and the scalar
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field asymptotically approaches to the second SR attractor. Eventually, the trajectory can be
regarded as settling on the SR attractor, and we call the scalar field value at that time as φf .

For later convenience, we conclude this section by defining useful quantities as follows.

ηi ≡ 2(2ϵV i − ηV i) , (2.7)

g ≡ π2
π1

< 1 , (2.8)

κ ≡
√

ϵV 1
ϵV 2

, (2.9)

ωs1 ≡
√

6B1
A1

≃
√

2 |π1|
∆φ

, (2.10)

ωs2 ≡
√

−6B2
A2

≃
√

2 |π1|
∆φ

, (2.11)

where ϵV ≡ (∂φv/v)2/2 and ηV ≡ ∂φφv/v are the potential slow-roll parameters and the
subscript i indicates that a quantity is evaluated at φ = φi (i = 1, 2). The approximations
used in eqs. (2.10) and (2.11) assume ∆φ ≪ |π1| and g ≪ 1, and the dependence of ωs1 and
ωs2 on ∆φ will be emphasized in the later discussion.

3 Background solution

In this section, we briefly discuss the background behavior of the scalar field in each of
the three stages. In solving the background equation of motion (2.3), we use the following
three approximations. (I) The kinetic energy of the scalar field is subdominant compared
to the potential energy, h2π2 ≪ v. (II) Assuming the width of the step ∆φ is sufficiently
small, we keep only its leading contributions. Consequently, φmin and φmax are identified
with φ1 and φ2, respectively. (III) The Hubble friction is negligible in the step stage. The
detailed derivations of the solutions and the discussions on the limitations of the above
approximations can be found in appendices B and D.

In the SR stages, a general SR solution is applicable,

φ(n) − φi = 2
√

2ϵV i

ηi

(
1 − e

ηi
2 (n−ni)

)
+ 1

3
(
πi +

√
2ϵV i

)(
e

ηi
2 (n−ni) − e−(3+ ηi

2 )(n−ni)
)
. (3.1)

Again, we used the shorthand notation Xi ≡ X(φi). One needs to know πi to fix the
boundary condition. In the first SR stage, the background trajectory is on the SR attractor,
i.e. π1 = −

√
2ϵV 1 and hence the second term in eq. (3.1) vanishes. In the second SR stage,

however, the trajectory is not on the attractor in the relaxation phase (see figure 1). To find
π2 we use the approximated energy conservation during the step stage,

π2 = −
√

π2
1 + 6 log

(
v(φ1)
v(φ2)

)
. (3.2)

Here π2/2 + 3 log(v) is conserved, because the background equation of motion with the above
approximations (I) and (III) reduces to dπ/dn + 3∂φ log(v) = 0 as shown in eq. (B.1).
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The step stage is split into the S1 and S2 region, which has a normal and inverted
harmonic potential, respectively (see eq. (2.6)). The background solutions in these regions are

φ(n) − φ1 = π1
ωs1

sin(ωs1(n − n1)) , (φc ≤ φ < φ1) (3.3)

φ(n) − φ2 = π2
ωs2

sinh(ωs2(n − n2)) . (φ2 < φ < φc) (3.4)

Note that for extremely small π2, eq. (3.4) can be inverted as ωs2(n2 − n) ≃ log(2ωs2(φ(n) −
φ2)/|π2|). This implies that it takes logarithmically longer time for the background inflaton to
climb up the upward step for smaller π2. It will have a significant impact on the final result.

4 Calculation of δN

We now turn our attention to the curvature perturbation R. According to the δN formalism,
the curvature perturbation R can be calculated as the difference in the number of e-folds
between the perturbed spacetime and the background spacetime [59–65],

R = δN ≡ N(φ + δφ, π + δπ; φf , πf ) − N(φ, π; φf , πf ), (4.1)

where N(φ, π; φ′, π′) is the number of e-folds for which the inflaton takes to evolve from (φ, π)
to (φ′, π′) in the phase space. In this paper, we assign (φ, π) to the background value at the
horizon crossing time for a scale of interest k. Note that the velocity perturbation δπ at the
starting point is assumed to be negligibly small. In what follows, we start from φ on the
first SR attractor (φ > φ1), and compute δN generated in all stages.2

In the first SR stage, the initial perturbation δφ induces δN as well as the velocity
perturbation at the end of the first stage δπ1. We obtain them by comparing eq. (3.1) at
i = 1 to its perturbed expression with φ → φ + δφ and π1 → π1 + δπ1 as (see appendix C.1
for derivation)

δN (1) ≃ −δφ

π
, δπ1 ≃ −η1

2

(
π

π1

) 6
η1

δφ , (4.2)

where δN (1) denotes the contribution to total δN from the first SR stage. This approximation
is valid for |δN (1)| ≪ 1/3. One can apparently choose φ from any values within the first SR
stage. However, since 6/η1 is large, if we choose φ far from the step, δπ1 would be substantially
suppressed by the factor (π/π1)6/η1 . This is a consequence of the fact that the background
trajectory is an attractor in the first SR stage. If δπ1 is strongly suppressed, there would be
no significant contribution to total δN from the subsequent evolution in the step stage. In
this paper, therefore, we consider φ close to φ1 and investigate the effect of the upward step
on the curvature perturbations, that exit the horizon slightly before entering the step stage.

2The e-folding number taken for the inflaton to pass through the step stage is only about ∆N ∼ 1/ωs1 ≪ 1
and the corresponding band of wavenumbers that exit the Hubble horizon during the step stage, is very narrow.
Thus, we do not consider curvature perturbations on such scales in this paper. The scales crossing the Hubble
horizon after the step stage are not studied in this paper either, as they are similar to the normal SR case,
although the evolution of δφ well inside the horizon is affected by the step.
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In the second SR stage, δN is produced by δπ2, contrary to δN (1) induced by δφ.
Perturbing eq. (3.2), we find that δπ2 is given by

δπ2 = π2

√1 + 2
g2

δπ1
π1

+ 1
g2

(
δπ1
π1

)2
− 1

 , (4.3)

where the Hubble friction in the step stage was ignored. Using eq. (3.1) at i = 2 in a similar
way to eq. (4.2) but only with π2 → π2 + δπ2, we obtain the contribution to δN from the
second SR stage as (see appendix C.2)

δN (2) ≃ −κg

3
δπ2
π2

≃ κg

3

1 −

√
1 + 2

g2
δπ1
π1

+ 1
g2

(
δπ1
π1

)2
 . (4.4)

Note that the first approximate equality in eq. (4.4) relies only on |1/η2| ≫ 1 and we do
not assume that δπ2/π2 is small. Indeed, we will consider the case with |δπ2/π2| = O(1)
soon below.

The contribution to δN from the step stage is divided into two: one from the S1 region
δN (s1) and the other from the S2 region δN (s2). The former is highly suppressed by ∆φ and
(π/π1)6/η1 , and negligible compared to δN (1) (see appendix C.3). In contrast, δN (s2) can be
significant. As discussed below eq. (3.4), the background e-folds of the S2 region is given by

N (s2) ≃ 1
ωs2

sinh−1
( ∆φ

2|π2|
ωs2

)
≃ 1

ωs2
log
(∆φ

|π2|
ωs2

)
. (4.5)

Perturbing it, we obtain

δN (s2) ≃ − 1
ωs2

log
(

1 + δπ2
π2

)
. (4.6)

It is important to note that when δπ2 is comparable to −π2, δN (s2) may diverge to infinity.
This corresponds to the perturbed cases in which the inflaton exhausts the most of the kinetic
energy to climb up the step and takes an enormous amount of time to pass through it. As we
will see below, δN (s2) makes a significant impact on the curvature perturbation.

Summing up the contributions to δN from the three stages, eqs. (4.2), (4.4) and (4.6),
we obtain

R = βδφ + κg

3

1 −
√

1 + 2γ

g2 δφ + γ2

g2 δφ2

− 1
2ωs2

log
(

1 + 2γ

g2 δφ + γ2

g2 δφ2
)

, (4.7)

where β and γ are given by

β = − 1
π

> 0 , γ = η1β

2

(
π

π1

) 6
η1 ≃ η1β

2

(
k

k1

)3
. (4.8)

The second and third terms in eq. (4.7) originate from the upward step. The third term
particularly comes from the finite width of the step. In fact, vanishing the step width ∆φ → 0
(i.e. ωs2 → ∞) and dropping the third term would reproduce the results of previous papers
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that ignored the width of the step [81, 82]. Instead, substituting g = 1 into eq. (4.7), we
obtain a similar logarithmic dependence on δφ to the result in the bump-type model [67].3

5 Probability distribution function of R

The second and third terms in eq. (4.7) make the curvature perturbation highly non-Gaussian.
To investigate the properties of R, we calculate its probability distribution function (PDF).
The PDF of R is associated with the PDF of δφ by probability conservation, P [R] =
P [δφ]|dδφ/dR|. For simplicity, we assume that δφ follows a Gaussian distribution with
variance σ2

δφ.4 From eq. (4.7), the PDF of R is given by

P [R] =
∑

i

1√
2πσ2

δφ

(
1 + 2γ

g2 δφi + γ2

g2 δφ2
i

)
exp

(
− δφ2

i

2σ2
δφ

)
∣∣∣β(1 + 2γ

g2 δφi + γ2

g2 δφ2
i

)
− γ

g2 (1 + γδφi)
(

κg
3

√
1 + 2γ

g2 δφi + γ2

g2 δφ2
i + 1

ωs2

)∣∣∣ , (5.1)

where δφi’s (i = a, b) are the two solutions of eq. (4.7) for a given R.5 Numerically computing
the above equation, we illustrate the PDF of R in the left panel of figure 2. One can clearly
see an asymmetric non-gaussian shape of the full PDF.

To understand several features of the obtained PDF, it is useful to compare it with
simplified PDFs, which take into account only one term out of three in eq. (4.7). If one term
gives a dominant contribution, an analytic expression of the PDF is available. Note that
for the first term, which is a linear term of δφ, we linearize the other terms and collect all
the contributions. We find that only with the linearized, second, third term in eq. (4.7),
the PDF would be (see appendix E for derivation)

P [R] ∝



exp

− R2

2
(

β− κγ
3g

− γ

ωs2g2

)2
σ2

δφ

 : (Gaussian)

(
1 − 3R

gκ

)
exp

[
− 1

2σ2
δφ

9g2R2

γ2κ2

(
1 − 3

2
R
gκ

)2
]

: (Cutoff)

exp(−2ωs2R) exp
[
− 1

2σ2
δφ

g2

4γ2

(
exp(−2ωs2R) − 1

)2]
: (Exponential tail)

(5.2)

where g ≪ 1 is assumed for simplicity. We dubbed these three cases as Gaussian, Cutoff and
Exponential tail after their features. The linearized term yields a Gaussian PDF. The PDF

3In the limit g → 1 while keeping ∆φ finite, our step potential becomes a bump feature, not the featureless
SR potential. The previous paper [67] computed δN only in the bump region. Hence, it is reasonable that the
logarithmic term in eq. (4.7) approaches to eq. (1.5) in the previous paper [67] for g = 1 and φ = φ1. However,
its coefficient is not exactly the same but differs by

√
3, probably because our assumption (II) i.e. φmax ≃ φ2

and φmin ≃ φ1, is broken in the limit g → 1.
4We mention that δφ may have a non-Gaussianity of non-local type, arising from non-trivial higher order

interactions. However, since such a non-Gaussianity is known to be perturbatively small in comparison
with the local type non-Gaussianity for a canonical scalar field [107], we ignore it. Considering a possible
non-perturbative effect of a non-local type non-Gaussianity is an important issue, but it is beyond the scope
of the present paper.

5Strictly speaking there is the possibility that eq. (4.7) has another solution for a given R in a region
δφ < −2/γ. In the following, the contribution of this solution to the probability is ignored as being small.
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Figure 2. The probability distribution function (PDF) of the curvature perturbation R against
R − ⟨R⟩ for γ = 1.5, κ = 60, β = 20, g = 0.02, and σδφ = 2 × 10−5. The mean value ⟨R⟩ = O(10−3)
is negligibly small. (Left panel) The solid blue line denotes the full PDF obtained numerically based
on eq. (5.1) for ωs2 = 50. The coloured dotted lines represent the Gaussian (red), cutoff (green) and
exponential tail (black) given in eq. (5.2). (Right panel) The coloured lines denote the full PDFs for
ωs2 = 30, 50, 100, 250, 400 and 1000 from top to bottom. They agree with the analytical behavior of
the tail P [R] ∝ exp(−2ωs2R). Since ωs2 ∝ 1/∆φ, a steeper step tends to produce a steeper tail.

of the second term exhibits a sharp cutoff at R = Rcutoff ≡ κg/3 due to its prefactor. The
PDF of the third term characterized by its exponential tail, exp(−2ωs2R).

In the left panel of figure 2, these three simplified PDFs in eq. (5.2) are shown as dotted
coloured lines in comparison with the full PDF. The full PDF (blue solid) matches the
Gaussian one (red dotted) only for small R−⟨R⟩ and their discrepancy quickly gets significant.
Since we chose large κ = 60 in this figure, the second term in eq. (4.7) is dominant for a wide
region, and the full and the cutoff PDF (green dotted) are well overlapped up to the cutoff
position R − ⟨R⟩ ≃ Rcutoff = 0.4. For larger R, the exponential tail from the third term
(black dotted) becomes prominent, and the full PDF follows it as expected. Therefore, the
cutoff feature in the PDF advocated in the previous works [81, 82] is covered up by the tail
contribution as long as the finite width of the step is correctly taken into account.

To scrutinize the tail behavior, we present several PDFs with varying ωs2 in the right
panel of figure 2. Recalling that ωs2 ∝ 1/∆φ and the analytic tail PDF P [R] ∝ exp(−2ωs2R),
we expect the slope of the tail becomes steeper as ∆φ decreases (i.e. the step is steeper).
The figure confirms this behavior. For very large ωs2, the cutoff of the PDF appears to be
reproduced. However, it should be stressed that it is not a hard cutoff but a steep exponential
tail. Thus, the probability density is still non-zero at R ≥ Rcutoff even for huge ωs2.

With the evaluation of the PBH abundance in mind, we calculate the probability F̄ [Rc]
where R is greater than or equal to the threshold value of the PBH formation Rc, namely,

F̄ [Rc] =
∫ ∞

Rc

P [R]dR . (5.3)

It is called the complementary cumulative distribution function (CCDF) in the context of
probability theory. We also introduce the CCDF of the Gaussian PDF

F̄G[Rc] = 1
2Erfc

 Rc√
2σ2

R

 , (5.4)
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Figure 3. The complementary cumulative distribution function (CCDF) F̄ [Rc] in eq. (5.3) normalized
by the Gaussian case F̄G[Rc] in eq. (5.4) for ωs2 = 30, 50, 100, 250, 400 and 1000 from top to bottom.
The other parameters are the same as figure 2. The vertical dotted black line represents the cutoff
value Rcutoff = κg/3 = 0.4. Beyond the cutoff, the CCDF highly sensitive to ωs2 ∝ 1/∆φ, because of
the exponential tail contribution. Thus, the PBH abundance strongly depends on ωs2, if Rc > Rcutoff .

where Erfc(x) is the complementary error function and the variance is fixed by that of
the simplified Gaussian PDF in eq. (5.2), namely σR = |β − κγ/3g − γ/ωs2g2|σδφ. Their
ratio, F̄ /F̄G, is useful for understanding how much the non-Gaussianity impacts on the
abundance of PBH.

In figure 3, the normalized CCDFs for different ωs2 are shown against Rc − ⟨R⟩. The
cutoff value Rcutoff is also shown as a vertical black dotted line. It can be seen that the
CCDF dramatically changes depending on the value of ωs2, if Rc − ⟨R⟩ is larger than the
cutoff value. For smaller ωs2, the normalized CCDF becomes larger beyond the cutoff,
because the contribution from the exponential tail is more significant in comparison to the
Gaussian case. For huge ωs2, F̄ is abruptly suppressed at the cutoff but stays finite, because
of the tail contribution. These results imply that when the critical value Rc of the PBH
formation is larger than the cutoff Rcutoff , it is crucially important to take into account
the finite width of the upward step for estimating the PBH abundance, because otherwise
one may underestimate it.

6 Highly asymmetric PDF

In this section we will show that the PDFs with unusual shapes can be realised at certain
scales exiting the Hubble horizon before the step stage and discuss its consequences. For
the better understanding of this phenomenon, let us first revisit the relation between R and
δφ, eq. (4.7), which has been derived in section 4.

The relation (4.7) is illustrated as a solid black line in figure 4 for γ > 0 and β > κγ/3.
In the figure, the contributions of each term in eq. (4.7) are shown as coloured dashed lines.
We can see that at around δφ = −g2/2γ, the third term (green dashed line), which is the
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Figure 4. Schematic illustrations of eq. (4.7) for γ > 0 and β > κγ/3. The solid black line represents
the sum of the all three terms, and the dashed coloured lines represent each of them in eq. (4.7), i.e.,
the first term (red), the second term (blue), and the third term (green). The minimum value of R is
denoted by the horizontal dotted line. The boundary, −g2/2γ, is shown as the vertical dotted line.
The gray shaded region corresponds to the inflaton trajectories which fail to climb the step and are
stuck at a local minimum.

contribution from the step width, becomes dominant and causes R to diverge to infinity.
This gives rise to the exponential tail in the PDF of R.

It should be noted that there appears a local minimum of R. For γ > 0, one can see by
drawing a family of trajectories in the phase space that perturbed trajectories with δφ < 0
have smaller velocities |π| at φ1 than the background trajectory (i.e. |π1 + δπ1| < |π1|).
Therefore it takes an enormous amount of time for some of the trajectories to pass through
the step. As a result, they may lead to large positive δN for δφ < 0. One can also see
that from eq. (4.7), for β > κγ/3, the first term dominates for sufficiently large positive δφ,
and δN increases in proportion to δφ. Combining the above two facts together with the
fact that δN = 0 for δφ = 0, we can conclude that a local minimum of R exists, which we
denote by Rmin.6 In this section, we discuss the effect of the presence of Rmin on the PDF
and the local non-Gaussianity parameter f local

NL .
Now let us take a closer look at the PDF shape and consider its consequences. Expanding

eq. (4.7) with respect to δφ, we obtain

R = Aδφ + Bδφ2 + O(δφ3) (6.1)

with

A ≡ β − κγ

3g
− γ

ωs2g2 , B ≡ γ2

g2

[
κg

6

( 1
g2 − 1

)
+ 1

2ωs2

( 2
g2 − 1

)]
. (6.2)

6Note that, if γ < 0, δN is a monotonically increasing function of δφ and there is no Rmin. Therefore,
Rmin exists only if γ > 0, i.e. when the scalar field accelerates in the first SR stage.
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With eq. (6.1), the local non-gaussianity parameter of R is defined and computed as

f local
NL ≡ 5

3
B

A2 = 5
2

κg(1 − g2) + 3
ωs2

(2 − g2)(
3βg2

γ − κg − 3
ωs2

)2 . (6.3)

If A vanishes (i.e. R = Rmin = 0 at δφ = 0), the linear term in eq. (6.1) drops, the
denominator of eq. (6.3) disappears, and f local

NL diverges.7 It happens when γ = γ0 ≡
3βg2ωs2/(3 + κgωs2) > 0. Since γ depends on π/π1 (see eq. (4.8)), its value varies as the
scale of the curvature perturbation of interest k changes. Thus, f local

NL may diverge at a
particular scale at which γ = γ0 and A = 0. Although diverging f local

NL does not mean that
any physical quantity becomes singular, it is interesting to explore what kind of dynamics
occurs around this particular scale.

When A vanishes, R can take only positive values and then the PDF only has its right-half
part. This simple argument based on the expanded expression (6.1) actually applies to the
fully non-linear result (4.7). In figure 5, we present the full PDF for varying γ from a larger
value to γ0 = 0.3. One can see that the full PDF deforms from a rather symmetric shape
into a completely asymmetric one as the scale changes. Although it is not shown there,
for γ < γ0 the PDF regains its left-half part. At the lower end of the PDF of R, many
different values of δφ corresponds to the minimum R (see figure 4), their probability density
P [δφ] condenses there, and P [R] formally diverges. However, its contribution to the total
probability is negligible and harmless. In short, the peculiar behavior seen in figure 5 is not
pathological, and it is remarkable to have such a highly asymmetric PDF of R.

The most direct observables related to the PDF may be the variance and skewness of R,
i.e. ⟨(R − ⟨R⟩)2⟩ and ⟨(R − ⟨R⟩)3⟩. Using eq. (6.1), their ratio can be computed as

⟨(R − ⟨R⟩)3⟩
⟨(R − ⟨R⟩)2⟩2 =

6A2Bσ4
δφ + 8B3σ6

δφ

A4σ4
δφ + 4A2B2σ6

δφ + 4B4σ8
δφ

≃


18
5 f local

NL (A ≫ Bσδφ)
2

Bσ2
δφ

(A ≪ Bσδφ)
(6.4)

For A ≪ Bσδφ this ratio is not related to f local
NL , while in the other limit they coincide up to

an O(1) numerical factor. Figure 6 shows the variance, skewness and their ratio for γ around
γ0. Since γ corresponds to the scale k, they are closely connected to the power spectrum
and the bispectrum of the curvature perturbation. Both of them has a dip at γ = γ0 = 0.3
where the linear contribution from δφ disappears (i.e. A = 0). This corresponds to the dip
in the power spectrum that frequently appears in PBH formation models [108]. In linear
perturbation theory, δφ2 is neglected, R would vanish from eq. (6.1), and the dip is infinitely
deep at γ = γ0.8 In contrast, our result with the δN formalism indicates that the dip depth
is finite due to the non-linear contribution. It has been reported that the inclusion of a loop
correction results in a shallower dip [103], which is consistent with our result.

7This corresponds to the case where δN is always positive for any |δφ| regardless of its sign. This means
that the background trajectory passes through the step in the shortest time compared to all other perturbed
trajectories.

8The dip would never become exactly zero in linear perturbation theory, which is in contradiction with our
result. We suspect this is due to the neglection of the next leading order terms in gradient expansion in the
δN formalism. In any case, since the nonlinear terms dominate the spectrum at the dip, this inaccuracy does
not affect the conclusion that the deep dip disappears once nonlinear terms are included.
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Figure 6. (Left panel) The variance ⟨(R − ⟨R⟩)2⟩ (red) and the skewness ⟨(R − ⟨R⟩)3⟩ (blue) of the
curvature perturbation against γ representing the corresponding scale around γ0 = 0.3. They have
sharp dips at γ = γ0 because the linear term in eq. (6.1) vanishes. (Right panel) The ratio of the
these two ⟨(R − ⟨R⟩)3⟩/⟨(R − ⟨R⟩)2⟩ compared to the asymptotic expressions, 2/Bσ2

δφ (gray dashed)
and 18f local

NL /5 (black dashed), given in eq. (6.4). They match at γ = γ0 and at far region from it,
respectively, as expected. The parameter choice is the same as figure 5.

In order to intuitively understand the consequence of the highly asymmetric PDF, we
present figure 7 in which R is regarded as a classical stochastic quantity and its values are
randomly assigned to lattices on a two-dimensional plane. R is probabilistically weighted by
the Gaussian PDF in the left panel and the highly asymmetric PDF for γ = γ0 in the right
panel, respectively. It can be clearly seen that the distribution is biased to positive value
in the highly asymmetric case compared to the Gaussian case. In the highly asymmetric
case, R does not appear with large negative values because of Rmin. When one interprets
figure 7 as the spatial distribution of density fluctuations, this result would imply that there
are fewer voids (low-density regions) than the normal Gaussian case. It would be interesting
to consider such a signature in observation. We leave it for future study.
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Figure 7. Illustration of the distributions of the curvature perturbation R based on different PDFs.
R is randomly assigned to each of 40 × 40 two-dimensional lattice points according to the Gaussian
PDF (left) and the asymmetric PDF with γ = γ0 (right). Both panels use the same colour scheme,
with red for high and blue for low value of R. Identifying R with the density fluctuation, one can
observe the spatial distribution of the primordial density contrast. In the Gaussian distribution, high
and low density regions appear in equal proportions, whereas very low density regions (dark blue) are
not found in the highly asymmetric PDF, which implies the distribution is significantly biased.

We expect that such asymmetric PDFs generically appear in models in which the inflaton
experiences an accelerated SR phase, passes an inflection point, and subsequently enters a
decelerated phase. This is because when we consider δN from the accelerated SR phase, it
can become large and positive for both δφ > 0 and δφ < 0, which leads to the existence
of Rmin in the same way as our model.

Assuming the inflaton φ is initially slow-rolling and moving toward the negative direction,
the scalar field perturbation δφ in the accelerated phase affects the velocity at the inflection
point π1 in such a way that its absolute value |π1 +δπ1| becomes larger for δφ > 0. Conversely,
|π1 + δπ1| becomes smaller than |π1| for δφ < 0. For such trajectories it takes longer time to
pass through the decelerated phase, which leads to large positive δN .

On the other hand, for δφ > 0, although the time to pass through the decelerated phase
may become shorter by the increase in the absolute value of the velocity, depending on the
values of the model parameters as well as on the scale of interest, the number of e-folds may
eventually increase for sufficiently large δφ, as the perturbed trajectory starts at a greater
distance from the inflection point. This gives rise to the appearance of Rmin. In our model
the condition that this happens is β > κγ/3.

Furthermore, corresponding to the scale at which γ = γ0 in our model, we expect that
there is a scale at which δN is non-negative, regardless of the sign of δφ. This occurs when
the term linear in δφ vanishes. Apparently, the PDF in this case is highly asymmetric.
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7 Conclusion

We studied an inflationary model in which the inflaton potential includes a finite-width
upward step between two slow-roll stages. The inflaton loses its kinetic energy during the
step stage where it climbs up the step, which has a large effect on the statistical distribution
of the curvature perturbation. We derived the relation between the curvature perturbation
R and the scalar field perturbation δφ and obtained eq. (4.7) by using the δN formalism.
We found that the step-width ∆φ plays a important role in the estimation of R.

In section 5, we calculated the PDF of the curvature perturbation R and obtained eq. (5.1).
The result is shown in figure 2. For R < Rcutoff = κg/3 the PDF follows the Cutoff PDF
given in eq. (5.2), while for R > Rcutoff = κg/3 the exponential tail P [R] ∝ exp(−2ωs2R) is
dominant. The slope of the tail depends on the step width ∆φ through ωs2 ≃

√
2 |π1|/∆φ.

The CCDF was also calculated, and the significant impact on the PBH abundance of this
exponential tail was illustrated in figure 3. We conclude that the step width should be taken
into account for the accurate estimation of the PBH abundance.

In section 6 we discussed the highly asymmetric PDF. As shown in figure 4, for γ > 0
and β > κγ/3, R has a minimum value Rmin. At a particular scale γ = γ0 exiting the Hubble
horizon before the step, Rmin is realised with δφ = 0, which means that A as defined in
eq. (6.2) vanishes and that R is supported by δφ2 instead of δφ. We found that this scale
γ0 corresponds to the dip of the curvature power spectrum known in other models. On this
scale, f local

NL formally diverges and the highly asymmetric PDF appears as shown in figures 5
and 6. The highly asymmetric PDF may result in a lower abundance of low-density regions
such as voids (see figure 7) compared to the normal Gaussian case.

In this paper, we mainly investigated curvature perturbations on the scales exiting the
Hubble horizon just before the background inflaton enters the step stage. It would also be
interesting to calculate the PDF for scales exiting the Hubble horizon during and after the
step stage for the comprehensive understanding of this model. In doing so, one needs to track
the time evolution of δφ more precisely, to include the contribution of δπ, and to take into
account the intrinsic non-gaussianity of δφ. As another approach, it is also fascinating to
apply the stochastic-δN formalism to this upward step model. We leave these as future work.
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A Parameters in fstep

The parameters in eq. (2.6) are determined by imposing the continuity conditions on the
potential v(φ) and its first derivative ∂φv at φ = φ1, φ2 and φc. We then obtain the
parameters of fstep as

A1 = vsr1(φ1) − (∂φvsr1(φ1))2

4B1
, (A.1)

A2 = vsr2(φ2) − (∂φvsr2(φ2))2

4B2
, (A.2)

B1 = 2∆v

(∆φ)2 + 3∂φvsr1(φ1) + ∂φvsr2(φ2)
2∆φ

, (A.3)

B2 = − 2∆v

(∆φ)2 − ∂φvsr1(φ1) + 3∂φvsr2(φ2)
2∆φ

, (A.4)

φmin = φ1 − ∂φvsr1(φ1)
2B1

, (A.5)

φmax = φ2 − ∂φvsr2(φ2)
2B2

, (A.6)

where ∆v ≡ vsr2(φ2) − vsr1(φ1) corresponds to the height of the step.

B Solving background EOM

Here we solve the background equation of motion for the scalar field. In the following, we
assume that the kinetic energy of the scalar field is subdominant compared to the potential
energy, h2π2 ≪ v, throughout the three stages (approximation (I) in section 3). This reduces
the EOM (2.3) to

dπ

dn
+ 3π + 3∂φv

v
= 0 . (B.1)

We analytically solve this approximate EOM (B.1) in each of the three stages.

B.1 SR stages

In this subsection we discuss the dynamics before and after the step. The step stage will
be addressed in the next subsections. In these stages, the potential is almost flat and the
Taylor expansion is a sufficiently good approximation for the potential. To solve eq. (B.1)
analytically, we expand the potential term up to the first order in the vicinity of φ = φi.
Then, we obtain the equation of motion

dπ

dn
+ 3π + 3

√
2ϵV i − 3

2ηi(φ − φi) = 0 , (B.2)

for φ ≥ φ1 (i = 1) and φ ≤ φ2 (i = 2), respectively. The solutions are

φ(n) − φi = C+
i (πi)eλ+

i (n−ni) + C−
i (πi)eλ−

i (n−ni) + 2
√

2ϵV i

ηi
, (B.3)
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where λ±
i and C±

i are constants for a given trajectory (i.e. for given boundary conditions
at n = ni),

λ+
i = −3

2

(
1 +

√
1 + 2ηi

3

)
≃ −3 − ηi

2 , (B.4)

λ−
i = −3

2

(
1 −

√
1 + 2ηi

3

)
≃ ηi

2 , (B.5)

C+
i (πi) = 1

λ+
i − λ−

i

(
πi + λ−

i

2
√

2ϵV i

ηi

)
≃ −1

3
(
πi +

√
2ϵV i

)
, (B.6)

C−
i (πi) = 1

λ−
i − λ+

i

(
πi + λ+

i

2
√

2ϵV i

ηi

)
≃ 1

3

(
−6

√
2ϵV i

ηi
+ πi +

√
2ϵV i

)
. (B.7)

For later discussion, we show π2 with the first-order ∆φ-corrections from the effect of
the Hubble friction term. From the energy conservation law which includes the dissipation
caused by the Hubble friction term, we obtain

π2 = −
√

π2
1 − 6 log

(
v(φ2)
v(φ1)

)
− 6

∫ n2

n1
π2(n)dn (B.8)

≃ −
√

π2
1 − 6 log

(
v(φ2)
v(φ1)

)
− 3π2

1N (s1) + 3πc∆φ − 3π2
2N (s2) , (B.9)

where we used the zeroth-order solutions (3.3) and (3.4) to derive the second line. In eq. (B.8),
the third term inside the square root corresponds to the dissipation term, which we ignored
in the main context as the approximation (III) in section 3.

Note, however, that the last three terms in eq. (B.9) are not negligible compared to the
sum of the first two terms for ωs1g2 < 1. Therefore, for the purpose of estimating π2, the
approximation (III) is not a good approximation. However, as we will see later in appendix D,
the approximation (III) can be considered as a good approximation for estimating δπ2.

B.2 S1 region

Substituting eq. (2.6) into eq. (B.1) yields the equation of motion to be solved. To solve it
analytically, we approximate the denominator of the third term in eq. (B.1) to be the constant
value A1 shown in eq. (A.1). This approximation is valid under the assumption that the step
height ∆v is sufficiently smaller than the value of the potential. Then the EOM is given by

dπ

dn
+ 3π + ω2

s1(φ − φmin) = 0 . (B.10)

Assuming ω2
s1 > 9/4 and setting the values at n = n1 as φ = φ1 and π = π1, the solution is

φ(n) − φmin = Ds1e− 3
2 (n−n1) sin

(√
ω2

s1 − 9
4(n − n1) + θs1

)
, (B.11)
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where Ds1 and θs1 are constants for a given trajectory, defined by

Ds1 = −

√√√√π2
1 + 3π1(φ1 − φmin) + ω2

s1(φ1 − φmin)2

ω2
s1 − 9

4
, (B.12)

cos θs1 =
π1 + 3

2(φ1 − φmin)

Ds1
√

ω2
s1 − 9

4

and sin θs1 = φ1 − φmin
Ds1

. (B.13)

Here we check that if ∆φ is sufficiently small, eq. (B.11) coincides with the solution,
eq. (3.3), obtained from the approximated EOM to which approximations (II) and (III) are
applied. For this purpose, it is sufficient to compare ω2

s1(φ1 − φmin)2 to π2
1,

ω2
s1(φ1 − φmin)2

π2
1

= 3(∂φvsr1(φ1))2

2A1B1π2
1

≃ 3
4

(∂φvsr1(φ1))2

vsr1(φ1)
(∆φ)2

π2
1∆v

∼ 9ϵV 1
(∆φ)2

π4
1

= O
( 1

ω2
s1

)
,

(B.14)

where we used the approximation ∆v ∼ vsr1(φ1)π2
1/6, which can be derived by the energy

conservation law (3.2). From eq. (B.14), it follows that if ωs1 is much larger than 1, Ds1, θs1 and
φmin are reduced to π1/ωs1, 0 and φ1, respectively, i.e. eq. (3.3) is reproduced from eq. (B.11).

B.3 S2 region

Similarly, for the S2 region, the EOM to be solved is

dπ

dn
+ 3π − ω2

s2(φ − φmax) = 0 , (B.15)

where we used the fact that B2 is a negative value. Setting the values at n = n2 as φ = φ2
and π = π2, the solution is

φ(n) − φmax = Ds2e− 3
2 (n−n2) sinh

(√
ω2

s2 + 9
4(n − n2) + θs2

)
, (B.16)

where Ds2 and θs2 are constants for a given trajectory, defined by

Ds2 = −

√√√√π2
2 + 3π2(φ2 − φmax) − ω2

s2(φ2 − φmax)2

ω2
s2 + 9

4
, (B.17)

θs2 = log

 1
Ds2

√
ω2

s2 + 9
4

(
π2 +

(
3
2 +

√
ω2

s2 + 9
4

)
(φ2 − φmax)

) . (B.18)

Similar to eq. (B.14), we compare ω2
s2(φ2 − φmax)2 to π2

2 to find a condition under which
eq. (3.4) is reproduced. We obtain

ω2
s2(φ2 − φmax)2

π2
2

≃ 3
4

(∂φvsr2(φ2))2

vsr2(φ2)
(∆φ)2

π2
2∆v

∼ 9ϵV 2
(∆φ)2

π2
1π2

2
= O

( 1
κ2g2ω2

s2

)
, (B.19)

where we used the approximation ∆v ∼ vsr2(φ2)π2
1/6. Thus, if κgωs2 ≫ 1 is satisfied, then Ds2,

θs2 and φmax can be approximated by π2/ωs2, 0 and φ2 and eq. (B.16) reduces to eq. (3.4).
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C Derivation of δN in each stage

C.1 First SR stage

In the first SR stage the background trajectory is on the SR attractor. From eq. (B.3), we have

φ − φ1 = −2
√

2ϵV 1
η1

e−λ−
1 N(1) + 2

√
2ϵV 1
η1

, (C.1)

π = −
√

2ϵV 1 + η1
2 (φ − φ1) , (C.2)

where N (1) ≡ N(φ, π; φ1, π1).
Now, what we are here to discuss is the deviation from the SR attractor, thus it is

not sufficient just to perturb the background solutions (C.1) and (C.2). Replacing π1 with
π1 + δπ1 in C±

1 , eq. (B.3) gives a perturbed trajectory,

φ(n) − φ1 = C+
1 (π1 + δπ1)eλ+

1 (n−n′
1) + C−

1 (π1 + δπ1)eλ−
1 (n−n′

1) + 2
√

2ϵV 1
η1

, (C.3)

π(n) = C+
1 (π1 + δπ1)λ+

1 eλ+
1 (n−n′

1) + C−
1 (π1 + δπ1)λ−

1 eλ−
1 (n−n′

1) , (C.4)

which correspond to a trajectory passing through (φ1, π1 + δπ1) at n = n′
1. We assign δφ

so that, in the phase space, (φ + δφ, π) lies on the perturbed trajectory given by eqs. (C.3)
and (C.4). Note that δφ is uniquely determined by δπ1. Conversely, δπ1 should not be
chosen such that there is no corresponding δφ. This allows us to substitute φ(n′) = φ + δφ

and π(n′) = π into eqs. (C.3) and (C.4) as values at n = n′. Then, solving the system of
equations for eλ+

1 (n′−n′
1) and eλ−

1 (n′−n′
1), we obtain

δπ1 ≃ −λ−
1 δφeλ+

1 N (1)
, (C.5)

δπ1 ≃
(

−λ+
1 δφ +

(
1 − λ+

1
λ−

1

)
π∗

)
eλ−

1 N (1) −
(

1 − λ+
1

λ−
1

)
π1 , (C.6)

where N (1) ≡ N(φ + δφ, π; φ1, π1 + δπ1) = n′
1 − n′. To derive these results, we used the

background solution (C.2) and π1 = −
√

2ϵV 1.
What we need to know in particular is the relation to δφ for each of δπ1 and δN (1)(≡

N (1) − N (1)). In principle, it is possible to solve them because there are two equations for
two unknown quantities. However, since this system of equations contains two exponential
functions, it is not possible to obtain an explicit form of the analytic solution. In order to
solve them analytically, we limit our discussion to considering only the case in which δN (1) is
sufficiently small, and perform an approximation that ignores second and higher orders for
δN (1) and δφ. That is, the exponential functions in eqs. (C.5) and (C.6) are approximately

eλ±
1 N (1) = eλ±

1 N(1)
eλ±

1 δN(1) ≃
(

π1
π

)λ±
1

λ−
1
(
1 + λ±

1 δN (1)
)

, (C.7)

where we used eλ−
1 N(1) ≃ π1/π, which is derived from eqs. (C.1) and (C.2). Notice that this

approximation (C.7) is only valid if |δN (1)| ≪ 1/3 is satisfied. This then makes it possible to
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solve the system of equations analytically, and the final results can be obtained as

δπ1 ≃ −λ−
1

(
π1
π

)λ+
1

λ−
1 δφ ≃ −η1

2

(
π

π1

) 6
η1

δφ , (C.8)

δN (1) ≃
λ+

1 − λ−
1

(
π
π1

)1−
λ+

1
λ−

1

λ−
1 − λ+

1

δφ

π
≃ −δφ

π
. (C.9)

Note that in the above discussion δN (1) is limited to being small, but N (1) is not limited at all.

C.2 Second SR stage

By solving eq. (B.3) for φ ≤ φ2 in conjunction with the equation for π derived by differentiating
eq. (B.3) with respect to n, we obtain N (2)(≡ N(φ2, π2; φf , πf ) = nf − n2) as

N (2) ≃ 1
λ−

2
log


(

1 − λ+
2

λ−
2

)
πf

π2 + λ+
2

λ−
2

√
2ϵV 2

 , (C.10)

where πf is the value of π at n = nf . Replacing π2 with π2 + δπ2 in C±
2 , eq. (B.3) gives

a perturbed trajectory. We can immediately obtain

N (2) ≃ 1
λ−

2
log


(

1 − λ+
2

λ−
2

)
(πf + δπf )

π2 + δπ2 + λ+
2

λ−
2

√
2ϵV 2

 , (C.11)

where N (2) ≡ N(φ2, π2 + δπ2; φf , πf ). Recall that we ignore δπf by choosing nf as the time
later than which the trajectory converges to the SR attractor. Then δN (2) is given by

δN (2) ≡ N (2) − N (2) ≃ − 1
λ−

2
log

1 +
δπ2
π2

1 − λ+
2

λ−
2

1
κg

 ≃ −κg

3
δπ2
π2

. (C.12)

Note that the last approximate equality in eq. (C.12) is an approximation due to the fact that
|λ+

2 /λ−
2 | is much larger than 1, not that δπ2/π2 is small. Substituting eq. (4.3) into eq. (C.12)

leads to eq. (4.4), but note that eq. (4.3) ignores the Hubble friction. In appendix D, we
will discuss the validity of eq. (4.3).

C.3 Step stage

First, let us estimate the number of e-folds in the S1 region. Assuming that ∆φ is sufficiently
small, i.e. ωs1 ≫ 1, eq. (B.11) gives

−1
2∆φ ≃ π1

ωs1
e− 3

2 N(s1) sin
(
ωs1N (s1)

)
, (C.13)

where N (s1) ≡ N(φ1, π1; φc, πc) = nc − n1. The scalar field should not oscillate around the
local minimum of the potential as it climbs through the step. This fact tells us that

N (s1) ≤ π

2ωs1
≪ 1 , (C.14)
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where we used that ωs1 is an inverse power of the order of ∆φ and is very large compared to 1.
In this context, since the damping factor exp(−3N (s1)/2) is approximately equal to 1, we have

N (s1) ≃ 1
ωs1

arcsin
(

−∆φ

2π1
ωs1

)
. (C.15)

Then varying N (s1) with respect to δπ1 yields

δN (s1) = −1
2

∆φ√
π2

1 −
(

1
2∆φωs1

)2

δπ1
π1

≃ − 1
ωs1

δπ1
π1

≃ − η1
2ωs1

(
π

π1

)1+ 6
η1

δN (1) . (C.16)

Here, δπ1/π1 is assumed to be much smaller than 1, and δN (s1) is expanded up to the first
order of δπ1/π1. It can be seen that δN (s1) is strongly suppressed by ∆φ and (π/π1)1+ 6

η1

compared to δN (1). For this reason, we have ignored δN (s1) in the main part of the paper.
The number of e-folds for the S2 region can then be calculated by imposing the same

condition, i.e., ∆φ is small (quantitatively, ∆φ ≪ κg|π1|). Since ωs2 is considerably larger
than 3/2, the damping factor e−3(n−n2)/2 in eq. (B.16) is negligible. Under this approximation,
eq. (B.16) can be solved inversely for N (s2) ≡ N(φc, πc; φ2, π2) = n2 − nc, and it yields

N (s2) ≃ 1
ωs2

sinh−1
( ∆φ

2|π2|
ωs2

)
≃ 1

ωs2
log
(∆φ

|π2|
ωs2

)
. (C.17)

The number of e-folds in the perturbed trajectory, N (s2) ≡ N(φc, πc + δπc; φ2, π2 + δπ2), is
also represented in the same form. As a result, we obtain

δN (s2) ≃ − 1
ωs2

log
(

1 + δπ2
π2

)
. (C.18)

It is important to note that this may not be just a correction term. Certainly 1/ωs2 is of the
order of ∆φ, however when δπ2 is comparable to −π2, δN (s2) may diverge to infinity. This is a
consequence of the existence of perturbed trajectories that barely reach the local maximum of
the potential and take an enormous amount of time to pass through the step. Therefore, the
contribution to the total δN from δN (s2) cannot be ignored and must be taken into account.

D Hubble friction corrections during step stage

In the main text we imposed the approximation condition (III) and neglected the Hubble
friction during the step stage. However, as we have seen in appendix B.1, the O(∆φ)
corrections are not necessarily negligible compared to the zeroth orders in the background
solution, since the first and second terms in eq. (B.9) largely cancel each other out for small g.
In this section we verify that they are negligible at the perturbation level and that eq. (4.3)
is a good enough approximation.

From eq. (B.9), we can obtain

π2 + δπ2 = π2

[
1 + 2

g2
δπ1
π1

+ 1
g2

(
δπ1
π1

)2
− 3

g2

(
1 + δπ1

π1

)2
δN (s1) − 3δπ1

g2π1

(
2 + δπ1

π1

)
N (s1)

+ 3∆φ

g2 δπc − 3
(

1 + δπ2
π2

)2
(N (s2) + δN (s2)) + 3N (s2)

] 1
2

. (D.1)
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In the following, for simplicity, the second and higher orders of δπ1/π1 are truncated.
This is well justified for g ≪ 1. Substituting the already calculated ∆φ zeroth order
solutions (C.15), (C.16), (C.17), (C.18) and (4.3) into eq. (D.1), we obtain

π2+δπ2 = π2

[
1+ 2

g2
δπ1
π1

− 3
g2 δN (s1)− 6δπ1

g2π1
N (s1)+ 3∆φ

g2πc

δπ1
π1

− 6δπ1
g2π1

N (s2)−3
(

1+ δπ2
π2

)2
δN (s2)

] 1
2

≃ π2

[
1+ 2

g2

(
1− 3

2ωs1
+ 3∆φ

2πc
− 3

ωs2
log
(√

2
g

))
δπ1
π1

+ 3
2ωs2

(
1+ 2

g2
δπ1
π1

)
log
(

1+ 2
g2

δπ1
π1

)] 1
2

.

(D.2)

Therefore, if the step width is sufficiently small, i.e. ωs1, ωs2 ≫ 1 and ωs2 ≫ |3 log g|, the
∆φ corrections are subdominant and negligible. In this case, the Hubble friction can be
ignored when calculating δπ2 with g as an input parameter, resulting in eq. (4.3) being
a good approximation.

E Derivation of PDF for each case

Using eq. (5.1), we can numerically obtain the PDF of R. However, since it is not possible to
solve eq. (4.7) analytically, we cannot obtain the analytically explicit form of the PDF in
terms of R. Instead of solving eq. (4.7) exactly, it may be useful to derive the shape of the
PDF in each case where one term in eq. (4.7) makes a larger contribution than others, in
order to understand the specific features of the full PDF in this model. For simplicity, in
the following discussion we assume that g ≪ 1, otherwise the PDF in our model becomes
close to the Gaussian case.

1. The linear perturbative regime. In this case, the PDF is obviously given by a Gaussian
distribution with variance σ2

R = (β − κγ/3g − γ/ωs2g2)2σ2
δφ, namely,

P [R] = 1√
2π
(
β − κγ

3g − γ
ωs2g2

)2
σ2

δφ

exp

− R2

2
(
β − κγ

3g − γ
ωs2g2

)2
σ2

δφ

 . (E.1)

2. The second term dominant regime. Based on the assumption g ≪ 1, we can ignore the
third term in the square root in the second term of eq. (4.7), i.e.

R ≃ κg

3

(
1 −

√
1 + 2γ

g2 δφ

)
. (E.2)

The inverse of this equation gives us

δφ ≃ 9
2

R2

γκ2 − 3gR
γκ

, (E.3)

and the PDF is

P [R] = 1√
2πσ2

δφ

3g

|γ|κ

(
1 − 3R

gκ

)
exp

[
− 1

2σ2
δφ

9g2R2

γ2κ2

(
1 − 3

2
R
gκ

)2
]

. (E.4)
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We note that in this case there is a cutoff at R = κg/3. It can be seen that the PDF
decreases rapidly towards 0 at R = κg/3 due to the factor 1 − 3R/gκ. Since the cutoff
depends not only on κ but also on g, the smaller g we choose, the smaller the cutoff
tends to be.

3. The third term dominant regime. Around δφ ≃ −2γ/g2, the main contribution to R is
the third term in eq. (4.7), namely,

R ≃ − 1
2ωs2

log
(

1 + 2γ

g2 δφ

)
. (E.5)

Thus δφ can be given by

δφ ≃ g2

2γ

(
exp(−2ωs2R) − 1

)
, (E.6)

and then the PDF is

P [R] = 1√
2πσ2

δφ

g2ωs2
|γ|

exp(−2ωs2R) exp
[
− 1

2σ2
δφ

g2

4γ2

(
exp(−2ωs2R) − 1

)2
]

. (E.7)

For a sufficiently large R, this PDF is almost proportional to exp(−2ωs2R), i.e. the tail
appears. Recalling that ωs2 ∝ 1/∆φ, we can see that the effect of this tail is suppressed
by ∆φ. If we take the case of zero width limit, ∆φ = 0, then the tail vanishes and the
cutoff described in refs. [81, 82] can be reproduced. However, the PDF is nonzero even
for R larger than the cutoff value, Rcutoff = κg/3, unless ∆φ is exactly zero. In this
sense, we can conclude that the cutoff is a side effect of ignoring the finite step width.
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