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The inflationary 1-loop tensor power spectrum from an excited spectator scalar field is calculated.
Recent studies on primordial black holes suggest that the inflationary curvature perturbation may
be huge on small scales. An enhanced curvature perturbation may arise from a drastic enhancement
of spectator scalar field fluctuations. In this letter, using the in-in formalism, we calculate 1-loop
quantum corrections to primordial gravitational waves by such an excited spectator field with a sharp
peak in momentum space. We find scale-invariant loop corrections in this full quantum setup, in
contrast to the sharply peaked corrections in the previously calculated scalar-induced tensor modes.
Especially on super Hubble scales, the primordial gravitational waves are also amplified, which can
be understood as a Bogoliubov transformation of the vacuum due to the excited scalar field. This
mechanism allows us to probe the scalar field properties on extremely short-distance scales with the
current and future cosmic microwave background and gravitational wave experiments, opening a
novel window for inflationary cosmology.

As the black hole merger detected in the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) event
in 2015 was unexpectedly massive [1], it rejuvenated the
idea of primordial black holes (PBHs) [2–4]. A PBH may
be formed from collapse of a Hubble horizon size region
in the early Universe when the spatial curvature of that
region happens to be large and positive [5–7]. However
the cosmic microwave background (CMB) data showed
tiny curvature fluctuations of O(10−5) that are almost
scale invariant at kMpc/h . 0.1 [8, 9]. Hence, the exis-
tence of PBHs implies a nontrivial scale dependence of
the curvature perturbation at some very short-distance
scales, and many models have been proposed to realize
such a scale dependence [10–23].

The curvature perturbation, or fluctuations in the en-
ergy momentum tensor in general, also produces grav-
itational waves (GWs) from nonlinear couplings in the
Einstein equation during and/or after inflation (for a re-
view, see e.g.,[24] and references therein). As these in-
duced GWs are causally generated, and the spectrum
has peaks where the source is amplified, they can be de-
tected in GW experiments as a counter part of PBH for-
mation [10, 25–27]. We may say, however, that this is a
classical effect as the quantum nature does not play any
significant role in it. Then one may ask a question: how
about genuine quantum effects of those fluctuations on
cosmological perturbations like curvature and/or tensor
perturbations?

This letter, for the first time, considers the effect of
the 1-loop corrections of an excited minimally coupled
scalar field to the tensor power spectrum in a full quan-
tum setup. We focus on the tensor perturbation as it
is much simpler than the case of the scalar (curvature)

perturbation. The Feynman diagrams in consideration
are shown in Fig. 1. We compute those contributions
using the in-in formalism. We find a surprising result
that the tensor power spectrum can be scale-invariantly
enhanced on superhorizon scales. This letter concisely
reports this novel result. The full technical details will
be presented in the companion paper [28]. In our setup,
where we are interested in the effect of an excitation,
possible divergences in the loop integrals due to infinite
large momentum modes or infinitely small momentum
modes [29–34] do not appear. We assume that the reg-
ularization and renormalization of the standard ground
state cosmological perturbations are applied to remove
such possible divergences, which is also assumed for re-
cent induced gravitational wave studies.

FIG. 1. The Feynman diagrams considered here: (a) and (b)
corresponds to Ph2 and Ph1, respectively, in our calculation.

Consider a Hamiltonian written as a sum of a free field
Hamiltonian and an interaction part, H0 + λHint. Then,
the vacuum expectation value (VEV) of a Heisenberg op-
erator OH at the conformal time τ in the interaction vac-
uum |Ω〉 is expressed by the interaction picture field as
follows [35, 36]:

〈Ω|OH(τ)|Ω〉 = 〈0|U(τ ; τ0)†OI(τ)U(τ ; τ0)|0〉, (1)

where |0〉 is the free vacuum, subscript I implies the in-
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teraction picture field, and the interaction picture time
evolution operator from the initial time τ0 to τ is

U(τ ; τ0) = T exp

(
−iλ

∫ τ

τ0

dτ ′Hint,I(τ
′)

)
, (2)

with the time ordering operator T . Eq. (1) is expanded
into, 〈Ω|OH(τ)|Ω〉 =

∑
n=0 λ

nOn(τ), where we intro-
duced

O0(τ) = 〈0|OI(τ)|0〉, (3)

O1(τ) = 2=
∫ τ

τ0

dτ ′〈0|OI(τ)Hint,I(τ
′)|0〉, (4)

O2(τ) =

∫ τ

τ∗0

dτ ′
∫ τ

τ0

dτ ′′〈0|Hint,I(τ
′)OI(τ)Hint,I(τ

′′)|0〉

−2<
∫ τ

τ0

dτ ′
∫ τ ′

τ0

dτ ′′〈0|O(τ)Hint,I(τ
′)Hint,I(τ

′′)|0〉, (5)

and τ0 ≡ −∞(1− iε) is the initial time of inflation with
the infinitesimal rotation on the time contour, to sup-
press the initial excited states. From now on we will set
the order-counting parameter λ to λ = 1. The Hamil-
tonian for cosmological perturbations during inflation is
obtained by expanding the inflationary full Hamiltonian
on a homogeneous and isotropic background spacetime,

which is written as Hfull = H(0) +H(1) +H
(2)
0 +H

(>2)
int .

H(0) is a c-number composed of background quantities,
and H(1) is the first order term eliminated by the back-

ground equation of motion. H
(2)
0 is quadratic in pertur-

bation, which accounts for the free theory. H
(>2)
int is the

rest of the interactions arising from the nonlinearity in
the full action, Sfull.

For the choice of the tensor perturbation variable, we
adopt Maldacena’s convention [35], where the spatial
component of the spacetime metric is parameterized as
gij = a2

(
δij + hij + 1

2hi
khkj + · · ·

)
. Here a = −1/(Hτ)

is the scale factor with the Hubble parameter H, and we
impose the transverse traceless condition hii = ∂ih

i
j = 0.

Note that we raise and lower the spatial indices of per-
turbations by regarding them as tensors with respect to
the background spatial metric, δij and δij . With this
gauge condition, the volume element is unperturbed by
hij :

√
det |gij | = a3, so that the interaction between hij

and a minimally coupled scalar field χ appears only in
the kinetic term,

Sfull ⊃ −
1

2

∫
d4x
√
−ggµν∂µχ∂νχ. (6)

Hereafter we denote the scalar field fluctuation by δχ.
Expanding and Legendre transforming Eq. (6), we find
the interaction Hamiltonian for the tensor-scalar cou-
pling

H
(2>)
int ⊃− 1

2

∫
d3xa2hij∂iδχ∂jδχ

+
1

4

∫
d3xa2hikhk

j∂iδχ∂jδχ , (7)

where and below we omit the suffix I for the fields in
the interaction picture for notational simplicity. In this
work, we do not consider tensor loops but focus on the
1-loop effect due to the amplification of δχ.

The perturbation variables in real space are written as

δχ(τ,x) =

∫
d3q

(2π)3
eiq·xδχq(τ), (8)

hij(τ,x) =

∫
d3q

(2π)3
eiq·x

∑
s=±2

esij(q̂)h
s
q(τ), (9)

where the polarization tensors satisfy esij(q̂)e
ij,s′∗(q̂) =

δss
′
. We recast each term of Eq. (7) as

H
(3)
int =

1

2

3∏
A=1

(∫
d3pA
(2π)3

)
(2π)3δ

(
3∑

A=1

pA

) ∑
s=±2

×a2hsp1
eij,s(p̂1)p2ip3jδχp2

δχp3
, (10)

H
(4)
int = −1

4

4∏
A=1

(∫
d3pA
(2π)3

)
(2π)3δ

(
4∑

A=1

pA

)∑
s1,s2

×a2eik,s1(p̂1)ek
j,s2(p̂2)p3ip4jh

s1
p1
hs2p2

δχp3δχp4 . (11)

The field operators in Fourier space are given by δχq =

uqâq + u∗q â
†
−q, and hsq = vq b̂

s
q + v∗q b̂

s†
−q, where âq(b̂sq)

and â†−q(b̂s†−q) are the annihilation and creation opera-
tors of the scalar (tensor) perturbation, respectively, and
uq and vq are the associated positive frequency mode
functions. For example, the ground state mode func-
tions of scalar and tensor perturbations are written as
uq ≡ H/

√
2q3(1 + iqτ)e−iqτ , and vq ≡ 2uq/Mpl. We will

compute VEV of OI(τ) =
∑
s=±2 h

s
q(τ)hsq′(τ) with these

interaction Hamiltonians.
Substituting Eqs. (10) and (11) into (4) and (5), we

find the 1-loop corrections to the tensor power spectrum:
P 1-loop
h = Ph2a + Ph2b + Ph1, where we defined

Ph2a =

∫ ∞
0

dp

∫ p+q

|p−q|
dp̄w̄

∣∣∣∣∫ τ

τ0

dτ ′a′2vqv
′∗
q u
′∗
p u
′∗
p̄

∣∣∣∣2 , (12)

Ph2b =− 2<
∫ ∞

0

dp

∫ p+q

|p−q|
dp̄w̄

×v2
q

∫ τ

τ0

dτ ′a′2v′∗q u
′
pu
′
p̄

∫ τ ′

τ0

dτ ′′a′′2v′′∗q′ u
′′∗
p u
′′∗
p̄ (13)

Ph1 ==
∫ ∞

0

dp
p4

3π2

∫ τ

τ0

dτ ′a′2v2
qv
′∗2
q |u′p|2 , (14)

where the primes imply those on τ in the argument, e.g.,
a′ ≡ a(τ ′) or u′′p ≡ up(τ ′′), and we introduced

w̄ ≡
pp̄
(
p4 − 2p2

(
p̄2 + q2

)
+
(
p̄2 − q2

)2)2

128π2q5
(15)
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FIG. 2. 1-loop spectrum at the end of inflation τ = 0 for various parameters associated with the scalar field amplification
factors (see (A) to (D) in the text for details). The horizontal axis is q̃ = q/p∗, the tensor mode’s Fourier wavenumber q
normalized by the peak location p∗. xa = p∗τa for a = i, f and ∆ is the width of the log-normal peak. The orange and blue
curves are the loop diagrams (a) and (b) in Fig. 1 for the delta function peak. The narrow log-normal peak counterpart for (a)
is illustrated by the thin green curve. Each spectrum is multiplied by P−1

h0 · (r/0.01)−1 with the linear tensor-to-scalar ratio r.
The black dashed line indicates unity. Dotted curves represent the negative parts.

In the derivation of the above equations, bubble graphs
and tadpoles are removed.

For computational simplicity, let us consider that the
scalar field fluctuation is amplified only at p = p∗ mode
as

|up(τ)|2 → δ(ln p− ln p∗)
(τi
τ

)2µ

|up(τ)|2, (16)

which implies that the canonical normalization of the
quantum scalar field is changed, for example, by a non-
trivial kinetic term. We consider the resonance starts at
τi � τ0 and ends at τf . Eq. (16) is the simplest toy
model of excitation, and a different model is also con-
sidered in the full paper [28]. Some models predict the
scalar field fluctuation decays after τf , but we keep the
same value until inflation ends at τ ∼ 0 for simplicity.
The loop integrals are straightforward in this setup.

Using Eq. (16), Eqs. (12), (13), and (14) yield

P δh1

Ph0
=
H2

M2
pl

=
∫ 0

x0

dxXq̃(x), (17)

P δh2a

Ph0
=

1

2

H2

M2
pl

Θ2−q̃

∣∣∣∣∫ 0

x0

Yq̃(x)dx

∣∣∣∣2 , (18)

P δh2b

Ph0
=− H2

M2
pl

Θ2−q̃<
∫ 0

x0

dx

∫ x

x0

dx′Y ∗−q̃(x)Yq̃(x
′), (19)

where the tree level tensor spectrum is Ph0 ≡ 2|vq(0)|2,
xa ≡ p∗τa (a = 0, i, f), q̃ ≡ q/p∗, Θ2−q̃ is the Heaviside
step function with the argument 2 − q̃ that implies the
momentum conservation, and we introduced

Xq̃(x) ≡ (1 + x2)(1− iq̃x)2

6π2q̃3x2
e2iq̃xΞ(x), (20)

Yq̃(x) ≡ (4− q̃2)(1− iq̃x)(1− ix)2

16πq̃2x2
ei(q̃+2)xΞ(x). (21)

The time dependence of the excited state is represented
by Ξ, and for the model (16) we have Ξ(x) ≡ (xi/xf )2µ

for xf ≤ x, (xi/x)2µ for xi ≤ x ≤ xf , and 0 for x ≤
xi, where the last condition implies we subtracted the
vacuum contribution as commented in the introduction.

In the IR limit q̃ → 0, we find P δh1/Ph0 is scale invari-
ant, i.e., P δh1 has the same scaling as Ph0. The leading

terms of P δ,IRh2a and P δ,IRh2b are q̃−4, but when combining
both terms the exact cancelation of the negative powers
happens up to q̃−2 and we obtain (P δh2a + P δh2b)/Ph0 =
O(q̃−1). This scaling happens because we considered the
delta function spectrum. The delta function spectrum
implies infinite distance correlations in real space, which
violates the causality. The same issue was discussed in
Ref. [37] in the context of classically scalar-induced GWs,
and they introduced a finite width in the spectrum by
considering a log-normal spectrum,

δ(ln p− ln p∗)→
1√

2π∆
e−

(ln p/p∗)2

2∆2 . (22)

They found an additional power of q̃ appears from the
log-normal factor for the narrow peak (∆ � 1) ap-
proximation. The same prescription is applicable to the
present case. Including Eq. (22), the step functions in
Eqs. (18) and (19) are generalized to

Θ∆
2−q̃ =

e2∆2

2

[
erf

(
2∆2 − ln (|1− q̃|)√

2∆

)
−erf

(
2∆2 − ln (1 + q̃)√

2∆

)]
=

√
2

π

q̃

∆
+O(q̃3/∆3), (23)

which satisfies lim∆→0 Θ∆
2−q̃ = Θ2−q̃. Therefore, in

the IR tail, we have PLN,IR
h2 =

√
2
π
q̃
∆P

δ,IR
h2 , so we find

scale invariant loop correction at q̃ � ∆. We also find
the contribution of the remaining diagram is unchanged:
PLN
h1 = P δh1.
As an example, let us consider δχ is amplified by a

factor of (xi/xf )µ ∼ 103. For the same amplification
factor, we may consider different situations. (A) Near
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horizon contribution; xf = −1, xi = −10, µ = 3: the
amplification happens and stops just before the horizon
exit of a spectator field. (B) Sub horizon contribution;
xf = −10, xi = −100, µ = 3: the amplification hap-
pens and stops well in advance of the horizon exit of a
spectator field. (C) Sub-to-Near horizon contribution;
xf = −1, xi = −100, µ = 1.5: the amplification hap-
pens well in advance and stops just before the horizon
exit of a spectator field. (D) Super horizon contribution;
xf = −0.1, xi = −1, µ = 3: the amplification happens
at the super horizon scale. In Fig. 2, we show the results
of numerical calculations for the above (A) to (D). We
present the 1-loop corrections in units of Ph0 · (r/0.01),
where r is the tensor-to-scalar ratio r for linear pertur-
bations. Hence, the plots above unity mean the loop
corrections are bigger than the tree level spectrum for
r = 0.01, and thus the perturbative description may be
failed. When δχ is on the super horizon scale in (D),
the loop corrections are relatively suppressed because of
causality but are not exactly zero. The figure shows that
the amplification at a shorter scale introduces larger 1-
loop corrections for the same amplification factor. This is
because the amplified δχ continuously contributes before
the horizon exit. The IR behavior discussed analytically
is reproduced in numerical calculation. The size of Ph1

and Ph2 are loosely related as Ph2 ≈ (xi/xf )2µPh1 near
q̃ = 1 as the former involves two additional scalar field
operators.

One might be interested in the connection to the in-
duced tensor modes that we mentioned earlier. The gen-
eration of the scalar-induced tensor mode is a classical
process in the sense that we integrate the classical equa-
tion of motion. A peculiar solution in the presence of a
classical source is [24]

hs,ind.
q =

∫
dτ ′Gq(τ, τ ′)Ssq(τ ′), (24)

where Gq(τ, τ ′) is the retarded Green function and Sscl.,q

is the source term for the polarization s, which arises
from the first line of the interaction Hamiltonian (7), or

H
(3)
int in Eq. (10). In the quantum language, this corre-

sponds to computing the first order effect of the interac-

tion Hamiltonian H
(3)
int .

Contrary to conventional wisdom, we find that ten-
sor modes can evolve after the horizon exit. Physically,
the interaction with the excited scalar field redefines the
vacuum state and hence modifies the mode functions.
As discussed below, the quantum evolution of the super
horizon mode may be interpreted as a Bogoliubov trans-
formation, which is not prohibited from causality.

As we are employing the interaction picture where
quantum properties play the essential role, it is expected
that if we can solve the evolution of the Heisenberg op-
erator perturbatively but explicitly, we should be able to
clearly see how the quantum nature comes into play. Us-
ing OH(τ) = U(τ ; τ0)†OI(τ)U(τ ; τ0) for the Heisenberg

operator OH = hsq,H with Eq. (2), up to second order,
one finds [36]

hsq,H(τ) = hsq(τ) + i

∫ τ

τ0

dτ ′[Hint(τ
′), hsq(τ)]

−
∫ τ

τ0

dτ ′
∫ τ ′

τ0

dτ ′′[Hint(τ
′′), [Hint(τ

′), hsq(τ)]] , (25)

where the first order interaction Hamiltonian describes
the Born approximation, while the second order term
is the first iterative contribution. One clearly sees that
Eq. (24) in quantum theory is written as [38]

hs,ind.
q = i

∫ τ

τ0

dτ ′[H
(3)
int (τ ′), hsq(τ)]. (26)

The remaining terms are not necessarily specific to quan-
tum theory but have been ignored in the previous works.
One of the authors recently considered the classical coun-
terpart of those contributions in Ref. [39] and found sim-
ilar one-loop order super horizon variation. We are in-
terested in how the initial vacuum state hsq evolves to a
final state. Therefore, to find the relevant part of hsq.H,
we compute the remaining Born approximation part due

to H
(4)
int and the iterative contribution due to H

(3)
int . After

some algebra and taking the average over δχ, we find

〈hsq,H〉δχ = Vqb
s
q + V ∗q b

s†
q , Vq = αqvq + βqv

∗
q , (27)

where 〈· · · 〉δχ implies that we integrated out δχ, and αq
and βq are functions of τ due to the interaction that are
found to satisfy |αq|2−|βq|2 = 1 up to 1-loop order. Thus,
we may regard the linear transformation from (vq, v

∗
q ) to

(Vq, V
∗
q ) as the Bogoliubov transformation. Those de-

tails will be presented in the companion paper [28]. In
this regard, it is interesting to note that the diagram (b)
in Fig. 1, which is due to the Born approximation part

of H
(4)
int and the iterative contribution, may be regarded

as an effective time-dependent mass term for the tensor
perturbation. In a class of massive gravity theory, it is
known that such a term can enhance the tensor pertur-
bation on superhorizon scales [40]. A similar term also
arises in the present case, as our background has no time-
translational invariance.

To justify our perturbative analysis, the scalar field’s
energy density should be, at least, sufficiently smaller
than the background energy density during inflation:
〈a−2(∂δχ)2〉 � M2

plH
2, which can be recast into

(p∗/a)2(τi/τ)2µ � M2
pl. In the above example, we con-

sidered (τi/τ)µ . 103, which gives the condition for the
peak physical momentum: p∗/a � 1015GeV. This con-
dition may be easily satisfied for the scale of our interest.

In this letter, we only considered the 1-loop corrections
to the tensor power spectrum. But the 1-loop tensor bis-
pectrum involves more scalar propagators as it contains
six powers of δχ, O(δχ6). Hence, it will also be ampli-
fied. Thus, the tensor perturbation may become highly
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non-Gaussian due to quantum corrections. We note that
the 1-loop corrections to the scalar power spectrum give
rise to a similar structure. The difference is that the
interaction terms are higher-order in slow-roll parame-
ters [35], which could be relatively suppressed compared
to the present case. We leave a detailed analysis of the
scalar case to a future project. Note that for some non-
attractor models [13] where large curvature perturbations
are produced by modifying the slow-roll parameters, the
loop corrections will not be amplified because the scalar-
tensor coupling in Eq. (7) is slow-roll suppressed.

For the time integration, we included the range xf <
x < 0, where the scalar fluctuations are no longer en-
hanced but assumed to remain constant. This results in
the change in the sign of d2Ph/dτ

2 at x = xf in our nu-
merical calculation. The late time contribution is found
to be a factor of O(1) to O(10) of the early time contri-
bution, depending on the parameters, but the IR scaling
does not change. In general, the field fluctuations may
decay after the enhancement, depending on the models.
In such a case, there will be virtually no appreciable late
time contribution. In any case, as the final amplitude
of the tensor spectrum depends largely on the late time
evolution of the scalar field fluctuations, precise speci-
fications of them are necessary to make quantitatively
accurate predictions.

Finally, we mention a potential issue about the gauge
independence. The gauge (in)dependence of Ph1 is not
obvious. In the Maldacena gauge, which we adopted,
the fourth-order coupling appears only in the scalar field
kinetic term for a minimally coupled scalar field. In
other gauges, a non-vanishing contribution from

√
−g

introduces additional gauge-dependent terms. It is in-
teresting to study if the gauge independence of Ph1 can
be shown when the contributions of all these gauge-
dependent terms are combined.

To conclude, we found that the quantum corrections
to the tensor spectrum can be scale-invariant and large;
hence it will have a strong impact on GW measurements
at all scales [41–50], in contrast to the induced GWs that
could be measurable only if the scalar spectrum by happy
chance has peaks at scales relevant to the current and
future GW detectors.
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