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We show that primordial black holes can be produced from the collapse of large isocurvature
perturbations of the cold dark matter. We develop a novel procedure to compute the resulting black
hole abundance by studying matched perturbations of matter-only universes, and we use our procedure to
translate observational constraints on black hole abundances into model-independent constraints on cold
dark matter isocurvature perturbations over a wide range of scales. The constraint on the typical amplitude
of the primordial perturbations weakens slightly slower than linearly on small scales.
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I. INTRODUCTION

Our Universe was endowed on large scales with pri-
mordial fluctuations which are small and adiabatic, visible
directly in the anisotropy pattern of the cosmic microwave
background [1,2]. We have much less information about the
initial state of our universe on small scales, where primor-
dial information is processed by nonlinear physics.
One model-independent statement that can be made

about small scale perturbations is that they cannot be so
large as to form too many primordial black holes (PBHs).
PBHs form from the collapse of large adiabatic perturba-
tions when they enter the cosmological horizon [3–5], and
therefore astronomical measurements of black hole abun-
dances provide invaluable cosmological information about
the primordial adiabatic mode on small scales [6,7].
In this work, we show that PBHs can also form from the

collapse of primordial isocurvature fluctuations of the cold
dark matter (CDM). This allows us to use black hole
abundance data to place wholly model-independent con-
straints on the CDM isocurvature component of the small
scale perturbations.
We will see that CDM isocurvature perturbations can

form PBHs if they are so large that the local matter density
becomes nonlinear sufficiently close to the horizon scale.
Forming light PBHs, corresponding to small regions enter-
ing the horizon early during radiation domination, therefore
requires CDM perturbations large enough that a local
region becomes CDM dominated well before global
matter-radiation equality. Constraints on primordial

CDM isocurvature from PBHs therefore become weaker
and weaker on smaller and smaller scales as larger and
larger CDM perturbations are required to induce local
matter domination earlier and earlier. This is in sharp
contrast with the adiabatic case, where the perturbation
amplitude required to produce a given PBH abundance at
formation does not significantly depend on when the
PBHs form.
The exact formation probability which relates the ampli-

tude of CDM isocurvature perturbations to the PBH
abundance has not yet been computed in the literature.
In this work we develop a novel matching procedure to
estimate it by identifying CDM isocurvature modes with
perturbations in matched matter-only universes. This
matching allows us to adapt results from studies of PBH
formation in matter-dominated universes [8–10] to study
PBH formation from CDM isocurvature. Because PBH
formation in matter domination is only power-law sensitive
to the perturbation amplitude, rather than exponentially
sensitive as in the adiabatic radiation-domination case,
constraints on PBH abundances probe a greater dynamic
range of the isocurvature spectrum than the adiabatic
spectrum.
This paper is organized as follows. In Sec. II, we recall

some basic results about the linear evolution of CDM
isocurvature perturbations in the early Universe. In Sec. III
we describe how sufficiently large CDM isocurvature
fluctuations can collapse to form PBHs and we introduce
our matching scheme to compute the PBH abundance today
from a given amplitude of primordial isocurvature fluctua-
tions. In Sec. IV we apply our technique to map existing
PBH abundance constraints to constraints on the primordial
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CDM isocurvature. Finally in Sec. V we discuss and
contextualize our results.

II. EVOLUTION OF CDM ISOCURVATURE
PERTURBATIONS

In this section we wish to solve for the evolution of a
CDM perturbation δc ≡ δρc=ρc starting from a large iso-
curvature initial condition. By this we mean that we
formally decompose the CDM perturbation at the primor-
dial epoch into isocurvature and adiabatic components [11]

δcð0Þ ¼ Sð0Þ þ Að0Þ; ð1Þ

as

Sð0Þ ¼ δcð0Þ − 3=4δγð0Þ;
Að0Þ ¼ 3=4δγð0Þ; ð2Þ

with δγ ≡ δργ=ργ the photon overdensity. (0) denotes an
initial time deep in radiation domination when all scales of
interest are superhorizon. We restrict our attention to the
large isocurvature regime Sð0Þ ≫ Að0Þ.
We work throughout in the Newtonian gauge, where the

metric takes the form

ds2 ¼ a2ðτÞ½−ð1þ 2ΨÞdτ2 þ ð1þ 2ΦÞδijdxidxj�; ð3Þ

with Ψ and Φ the Newtonian gauge curvature perturba-
tions. These are controlled in radiation domination by the
radiation perturbations through the Einstein equations
[12–14], and so the large isocurvature regime corresponds
to δc ≫ fΦ;Ψg during radiation domination for as long as
the total density and metric perturbations remain linear.
We can therefore neglect the metric perturbations in the

continuity and Euler equations for the CDM in linear theory
in radiation domination. We also restrict our attention to
modes which enter the horizon in radiation domination, and
which are therefore subhorizon during matter domination.
Since metric perturbations decay on subhorizon scales, we
can therefore neglect them in the continuity and Euler
equations for the CDM in matter domination as well. Under
these approximations the CDM perturbations evolve as [15]

d2δc
dy2

þ ð2þ 3yÞ
2yð1þ yÞ

dδc
dy

¼ 3

2yð1þ yÞ
Ωc

Ωm
δc; ð4Þ

where y≡ a=aeq is the scale factor relative to matter-
radiation equality aeq and Ωc and Ωm are, respectively, the
CDM and total matter densities today. For simplicity, we
throughout this work neglect the energy contribution of the
baryons and therefore set Ωc ¼ Ωm.

The solutions to Eq. (4) are

U1 ¼
2

3
þ y;

U2 ¼
15

8
ð2þ 3yÞ ln

�ð1þ yÞ1=2 þ 1

ð1þ yÞ1=2 − 1

�
−
45

4
ð1þ yÞ1=2; ð5Þ

of which only U1 approaches a constant during radiation
domination y → 0. Matching to this solution, we conclude
that the CDM perturbation evolves as

δc ≃
�
1þ 3

2

a
aeq

�
Sð0Þ; ð6Þ

which defines the transfer function

TðaÞ≡ δcðaÞ
δcð0Þ

≃ 1þ 3

2

a
aeq

: ð7Þ

This transfer function evolves CDM fluctuations from their
initial value, through radiation domination and into matter
domination, until linear theory breaks down as signaled by
the total density perturbation becoming order unity.
Defining keq to be the mode which crosses the horizon at

matter-radiation equality,

keq ¼ ð2ΩmH2
0=aeqÞ1=2 ≃ 0.01 Mpc−1; ð8Þ

where H0 is the Hubble constant today, this transfer
function is valid for k ≫ keq. These modes enter the
horizon at aH,

aH
aeq

¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðk=keqÞ2

q
4ðk=keqÞ2

≃
1ffiffiffi
2

p keq
k

ðk ≫ keqÞ; ð9Þ

well before matter radiation equality aeq ≫ aH.

III. PBHS FROM CDM COLLAPSE

The CDM overdensity can be spatially averaged across a
comoving scale R as

δcðRÞ ¼
Z

d3k⃗
2π3

WRðkÞδcðk⃗Þ; ð10Þ

whereWR is a smoothing function which suppresses small-
scale k ≫ R−1 modes and δcðk⃗Þ denotes a Fourier mode of
the CDM density perturbation. The time dependence we
solved for in Sec. II can be extracted from the integral to
write

δcðRÞ ¼ TðaÞδcðR; 0Þ; ð11Þ

SAMUEL PASSAGLIA and MISAO SASAKI PHYS. REV. D 105, 103530 (2022)

103530-2



with δcðR; 0Þ encoding the primordial isocurvature Sð0Þ
smoothed by WR.
The local CDM mass contained within a physical scale

aR depends on the smoothing function chosen, and we
absorb this dependence into a parameter μ,

MðRÞ ¼ μ ×
4

3
πðaRÞ3 × ρcðRÞ

¼ 4πR3μΩcð1þ δcðR; 0ÞÞH2
0M

2
Pl: ð12Þ

The window function also associates with R a comoving
wavenumber kR ≡ γ=R, with γ some number. Though our
results are qualitatively insensitive to such choices, in our
examples we use μ ¼ ð9π=2Þ−1 and γ ¼ 2.7 which corre-
spond to a Fourier space top-hat window function up to
some assumptions about convergence of the volume
integral [16,17].
Whether a region collapses into a PBH depends on the

local configuration of matter, and the PBH abundance can
therefore be obtained by integrating the probability dis-
tribution from which the perturbations are drawn against
some PBH formation criterion. The PBH abundance at
formation is defined as

βðRÞ≡ 1

ρtot

dρPBHðRÞ
d lnR

����
formation

; ð13Þ

which is the differential energy density contained in PBHs
formed by perturbations on the scale R, relative to the total
energy density and evaluated at the formation time.
For adiabatic fluctuations, the PBH formation criterion

and the resulting PBH abundance have been studied in
detail. If the smoothed total density fluctuations δðRÞ are
drawn from a Gaussian with variance σ2ðRÞ then the
abundance of PBHs at formation can be computed as some
function f of the typical fluctuation amplitude at horizon
crossing σðR; aHÞ,

βðRÞ ¼ fðσðR; aHÞÞ ðadiabaticÞ: ð14Þ

For adiabatic perturbations in radiation domination (see,
e.g., Ref. [18]), f ¼ fRD is an error function counting
regions in the tail of the density distribution which lie over a
collapse threshold where the radiation pressure can be
overcome.
For adiabatic perturbations in matter domination (see,

e.g., Ref. [19]), the fluid is pressureless and for large
fluctuations f ¼ fMD is only power law suppressed, with
Ref. [8–10] deriving

fMDðσðR; aHÞÞ ≃ finhomogeneous
MD × fanisotropicMD

¼ 0.02σðR; aHÞ13=2; ð15Þ

valid for 0.005≲ σðR; aHÞ≲ 0.1. A slightly different
behavior holds above ∼0.1, while below ∼0.005 the
PBH production is exponentially suppressed. The exact
form of the exponential cutoff including all relevant physics
is under investigation, but as a preliminary estimate the
results of Refs. [9,10] can be combined as

fMDðσðR; aHÞ≲ 0.005Þ
≃ 4 × 10−7σðR; aHÞ7=2e−0.15σðR;aHÞ−2=3 ; ð16Þ

where the coefficient has been chosen to match Eq. (15) at
the switch point.
In contrast to the adiabatic case, the formation of PBHs

from primordial CDM isocurvature fluctuations has not yet
been examined in the literature. In particular the mapping
between the amplitude of the CDM isocurvature fluctua-
tions and the resulting PBH abundance is not yet known.
Our novel approach is to estimate the PBH abundance by

matching the CDM isocurvature fluctuation δcðRÞ to a
fluctuation δ̃ðRÞ of a matter-only universe.
Namely, we construct a fictitious CDM-only universe

which behaves identically to the actual universe once the
CDM has dominated the local energy density. We insert
into this universe a perturbation δ̃ðRÞ which matches in
amplitude and scale the total density perturbation δðRÞ in
our universe. Tildes denote quantities in the fictitious
universe here and throughout.
The matched perturbation δ̃ðRÞ can then be evolved back

in time to find its amplitude δ̃ðR; ãHÞ when it crossed the
horizon in the CDM-only universe to determine whether it,
and therefore the isocurvature fluctuation it matches, will
form a PBH. This matching allows us to identify the PBH
abundance produced by Gaussian isocurvature fluctuations
with typical initial amplitude σcðR; 0Þ with the PBH
abundance produced by the matched σ̃ðR; ãHÞ as
fMDðσ̃ðR; ãHÞÞ using the matter-only formulas Eq. (15)
and Eq. (16).
To perform the matching we define a time aNLðRÞ when

the total overdensity smoothed on the scale R,

δðRÞ ¼ ρc
ρc þ ρR

δcðRÞ ≃ δcðR; 0Þ
ð1þ 3a=2aeqÞ
ð1þ aeq=aÞ

; ð17Þ

is equal to 1,

δðR; aNLÞ≡ 1; ð18Þ

and we suppress the R dependence of aNLðRÞ here and
throughout. Explicitly, we have

aNL
aeq

¼ B
δcðR; 0Þ

; ð19Þ
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where B¼ð1−δcðR;0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4δcðR;0ÞþδcðR;0Þ2

p
Þ=3

is an order unity number that goes from 2=3 when
δcðR; 0Þ ≪ 1 to 1 when δcðR; 0Þ ≫ 1. aNL indicates when
the evolution of the CDM perturbation becomes nonlinear.
We identify two limits of its behavior.
When δcðR; 0Þ is less than unity, we have aNL > aeq and

nonlinearity begins during the globally matter dominated
period of our universe. In this regime, the CDM fluctuation
is frozen until matter domination begins, and then
grows ∝ a until linear theory breaks down at aNL.
When δcðR; 0Þ is greater than unity, on the other hand, we

have aNL < aeq and nonlinearity begins during global
radiation domination while δcðRÞ is constant. At aNL, local
matter domination begins and δcðRÞ begins to evolve non-
linearly. Comparing aNL to the horizon crossing time aH,

aNL
aH

≃
ffiffiffi
2

p

δcðR; 0Þ
kR
keq

; ð20Þ

we restrict our attention to perturbations δcðR; 0Þ≲ffiffiffi
2

p
kR=keq so that nonlinearity begins only once the pertur-

bation is subhorizon.
We now use aNL to construct our fictitious matter-only

universe by matching the Hubble rate between the true and
fictitious universes at aNL ¼ ãNL. The Friedmann equation
in the fictitious universe reads

H̃2ðãÞ ¼ HðaNLÞ2
�

ã
aNL

�
−3

¼ H2
0Ωm

ã3

�
aeq
aNL

þ 1

�
; ð21Þ

and in this matter-only universe horizon crossing for the
scale R occurs at

ãH
aeq

¼ k2eq
2k2R

�
aeq
aNL

þ 1

�
; ð22Þ

where recall we only consider small-scale perturba-
tions kR ≫ keq.
We then insert into this fictitious universe a perturbation

δ̃ðRÞ with amplitude at horizon crossing

δ̃ðR; ãHÞ ¼
ãH
aNL

¼ k2eq
2k2R

δcðR; 0Þ
B

�
δcðR; 0Þ

B
þ 1

�
; ð23Þ

which enters the horizon earlier and with a lower amplitude
than the CDM isocurvature mode but its additional linear
growth ∝ a rescales its amplitude such that at aNL it
matches the density perturbation in our universe exactly,
δ̃ðR; aNLÞ ¼ δðR; aNLÞ ¼ 1. We then identify PBH

formation from the isocurvature fluctuation with PBH
formation from this matching perturbation of the matter-
only universe.
For Gaussian CDM fluctuations with variance

σ2cðRÞ ¼
Z

dk
k
WRðkÞ2

k3hδcðk⃗Þ2i
2π2

; ð24Þ

the variance of the matched fluctuations is thus

σ̃ðR; ãHÞ2 ¼
k4eq
4k4R

σcðR; 0Þ2
B2

�
3
σcðR; 0Þ2

B2
þ 1

�
; ð25Þ

with B ∼ Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σcðR; 0ÞÞ2

p
Þ.

From this matched amplitude of fluctuations the PBH
abundance at formation is computed using the matter-only
formula as

βðRÞ ¼ fMDðσ̃ðR; ãHÞÞ; ð26Þ

and therefore we can compute the PBH abundance for
CDM isocurvature modes by adapting existing results for
PBH formation from adiabatic perturbations in matter-
domination.
Note that the matching parameters δ̃ðR; ãHÞ and

σ̃ðR; ãHÞ, which control the PBH abundance, are sup-
pressed for small-scale modes by a factor ðkeq=kRÞ2. This
occurs because the Newtonian potential is suppressed
inside the horizon, and at aNL it is

ΨðR; aNLÞ ≃
a2NLHðaNLÞ2

k2R
δðR; aNLÞ

≃
δcðR; 0Þ2

2

k2eq
k2R

; ð27Þ

where we have used that δðR; aNLÞ ¼ 1 by definition. With
ΨðR; aNLÞ suppressed by ðkeq=kRÞ2 ≪ 1, significant non-
linear growth has to occur after aNL for PBHs to form
(Ψ ∼ 1) unless δcðR; 0Þ is very large. This nonlinear growth
enhances anisotropies in the distribution and makes col-
lapse to PBHs more difficult.
Therefore it is only when δcðR; 0Þ is not much less thanffiffiffi
2

p ðkR=keqÞ that PBHs can form, or equivalently only when
aNL ∼ aH [seeEq. (20)]. In this regime theCDMperturbation
is so large that local matter domination occurs near horizon
crossing for the mode, deep in global radiation domination.
When aNL ¼ aH, the total smoothed density fluctuation of
order unity at horizon crossing and subhorizon physics
cannot prevent collapse. This represents the upper limit of
validity of our calculation and corresponds to the matched
mode amplitude at horizon crossing δ̃ðR; ãHÞ ¼ 1.
In fact, Ref. [20] found by exact solution that the

curvature perturbation induced near horizon crossing by
a primordial isocurvature perturbation Sð0Þ ∼ δcð0Þ can be
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qualitatively approximated during radiation domination by
an effective primordial curvature perturbation with ampli-
tude ζð0Þ ∼ ðkeq=kRÞSð0Þ. This further reinforces that PBH
formation is possible when the isocurvature perturbation is
large enough to balance the suppression factor.
When this occurs our matching procedure then appro-

priately predicts large PBH abundances. For perturbations
even larger than this our formalism breaks down, but such
perturbations inevitably overproduce black holes.
We showourmatching procedure in Fig. 1 for threemodes

of a fixed scale kR=keq ¼ 106. We highlight the small
δcðR; 0Þ ≪ 1 regime (red), the intermediate δcðR; 0Þ ≫ 1

regime (blue), and the limiting regime δcðR; 0Þ ≃
ffiffiffi
2

p
kR=keq

(purple) regimes. Each mode is matched with a perturbation
of a matter-only universe and PBH formation from the two
modes is identified. This identification is a conjecture, and
though its limiting behaviors are well understood analyti-
cally, future work and in particular simulations of PBH
formation from CDM isocurvature fluctuations will be
essential to improving the constraints we present here.

Once they have formed, the abundance of PBHs relative
to the CDM is related to their abundance at formation
through a growth function gðRÞ,

fPBHðRÞ≡ΩPBHðRÞ
Ωc

¼ gðRÞβðRÞ; ð28Þ

where the growth function accounts for the relative red-
shifting of matter and radiation and therefore depends on
when the PBHs form. The total abundance today is
fPBH ¼ R

d lnRfPBHðRÞ. We associate the formation time
of the black holes with the nonlinearity time aNL, and thus
estimate the growth function as

gðRÞ ∼
�
1þ aeq

aNL

�
∼
σcðR; 0Þ

ξ
; ð29Þ

where in the last approximation we work in the aNL ≪ aeq
limit and we introduce an order unity fudge factor ξ to
account for uncertainty in the formation time. In our figures
we take ξ ¼ 1.
We can now compute the primordial black hole abun-

dance today resulting from Gaussian initial CDM isocur-
vature fluctuations. Since the CDM isocurvature is well
constrained on large scales [2], we are predominantly
interested in small-scale perturbations kR ≫ keq. In this
regime σ̃ðR; ãHÞ is suppressed by ðkeq=kRÞ2, and therefore
achieving a sizable abundance of black holes requires a

FIG. 1. The matching procedure which associates CDM iso-
curvature modes with fluctuations of matter-only universes. We
show CDM fluctuations δc on a fixed scale kR=keq ¼ 106

(R ≃ γ × 10−4 Mpc) crossing the horizon at aH=aeq ≃ 10−6. A
small fluctuation (solid red) is constant in radiation domination
and grows in matter domination until the total density fluctuation
δ ≃ δc × ρc=ρtot becomes nonlinear (aNL, circle). We match it to a
perturbation of a CDM-only universe (dashed red) with the same
Hubble rate at aNL and a smaller amplitude δ̃ðR; ãHÞ at horizon
crossing in the matched universe (ãH , cross). For a larger
fluctuation (blue), nonlinearity occurs in radiation domination,
the matched universe has a larger Hubble rate, and the matched
perturbation a larger δ̃ðR; ãHÞ. For a large enough fluctuation
(purple), aNL, aH , and ãH are simultaneous and collapse occurs at
horizon crossing. Still larger fluctuations break our formalism but
overproduce PBHs. Linear extrapolations (dotted) help show the
amplitude of the fluctuations. See Sec. III for further discussion.

FIG. 2. The primordial black hole abundance today (solid) and
at formation (dashed) as a function of formation scale kR=keq for
Gaussian primordial isocurvature fluctuations with primordial
amplitude σcðR; 0Þ ¼ 0.2kR=keq. As kR increases, the ðkR=keqÞ−2
suppression of σ̃ðR; ãHÞ (25) is compensated by the larger and
larger input perturbation and the PBH abundance at formation
approaches a constant. This large input perturbation leads the
PBHs to form earlier in radiation domination, enhancing the
abundance today through the growth function gðRÞ ≃ σCðR; 0Þ=ξ
(29). See Sec. III for further discussion.
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very large σcðR; 0Þ ≫ 1. In this regime the auxiliary
function B → 1 and σ̃ðR; ãHÞ approaches

σ̃ðR; ãHÞ ≃
ffiffiffi
3

p

2

k2eq
k2R

σcðR; 0Þ2: ð30Þ

Since the abundance at formation β ¼ fMDðσ̃ðR; ãHÞÞ is a
steep function, significant PBH formation generally
requires σcðR; 0Þ ∼OðkR=keqÞ.
We show in Fig. 2 the PBH abundance, today and

at formation, as a function of formation scale kR=keq
for a scale-dependent primordial isocurvature amplitude
σcðR; 0Þ ¼ 0.2kR=keq. For kR ≫ keq, σ̃ðR; ãHÞ approaches
a constant and thus so does the abundance at formation
βðRÞ. The abundance today fPBHðRÞ, however, grows as the
increasing σcðR; 0Þ translates to a larger and larger growth
function gðRÞ ≃ σcðR; 0Þ=ξ (29).

IV. ISOCURVATURE CONSTRAINTS FROM
PRIMORDIAL BLACK HOLES

The technique developed in Sec. III allows the present
day PBH abundance to be computed for given initial CDM
isocurvature fluctuations. We can now invert this procedure
and map observational constraints on PBH abundances to
constraints on the amplitude of primordial isocurvature. We
assume in obtaining these constraints that the CDM
isocurvature fluctuations are Gaussian.1 The initial
smoothed CDM variance σcðR; 0Þ2 in terms of the final
PBH abundance fPBHðRÞ is, in the σcðR; 0Þ ≫ 1 and
kR ≫ keq limits,

σcðR; 0Þ2 ≃
2ffiffiffi
3

p k2R
k2eq

f−1MD

�
fPBHðRÞ
gðRÞ

�
; ð31Þ

where f−1MD is the inverse function of the PBH abundance
for adiabatic fluctuations in matter domination fMD.
Measurements of the PBH abundance are performed at a

given mass as fPBHðMÞ. Neglecting accretion, the mass M
of the PBH produced by a given isocurvature fluctuation
obeys Eq. (12), depending not only on the scale R of the
perturbation but also on the amplitude of the perturbation
σcðR; 0Þ. The scale probed by measurements at a given
mass M is therefore

kRðMÞ
keq

≃
�
Meq

M
σcðR; 0Þ

�
1=3

; ð32Þ

again in the σcðR; 0Þ ≫ 1 regime and where Meq ≡
Mðγ=keqÞjσc¼0 ∼ 1017h−1 M⊙ is roughly the horizon mass
at matter-radiation equality. Plugging kRðMÞ into Eq. (31)
and reorganizing for the rms fluctuation yields

σcðR; 0Þ ≃
23=4

33=8

ffiffiffiffiffiffiffiffi
Meq

M

r
f−1MD

�
fPBH

σcðR; 0Þ=ξ
�

3=4
; ð33Þ

where we have also replaced the growth function gðRÞ with
its form in the σcðR; 0Þ ≫ 1 regime, σcðR; 0Þ=ξ. For a
power-law fMDðxÞ ¼ bxq, with fb; qg constants, we find

σcðR; 0Þ ≃
�
23=4

33=8

ffiffiffiffiffiffiffiffi
Meq

M

r �
ξfPBH
b

� 3
4q
� 4q

3þ4q

; ð34Þ

which gives the amplitude of the constraint on the pri-
mordial isocurvature for a given measurement of fPBHðMÞ.
To find the specific scale that is being constrained we plug
Eq. (34) back into the kRðMÞ equation (32) to find

kR
keq

≃
�
21=4

31=8

�
Meq

M

�1
2
þ 1

4q
�
ξfPBH
b

� 1
4q
� 4q

3þ4q

; ð35Þ

which as expected depends not only on the mass M but on
the strength of the constraint fPBHðMÞ. Finally, we can
express the constraint on σcðR; 0Þ as a function of kR=keq as

σcðR; 0Þ ≃
�
21=2

31=4
kR
keq

�
ξfPBH
b

� 1
2q
� 2q

2qþ1

; ð36Þ

where we see that for fixed fPBH the constraint on σcðR; 0Þ
degrades slightly slower than linearly in kR=keq.
We show in the top panel of Fig. 3 a representative

selection of constraints on the abundance of black holes of
various masses, fPBHðMÞ, obtained with the help of the
PBHbounds package [21]. As a whole, these constraints
extend from 10−24 M⊙ to 109 M⊙ and at their strongest
constrain PBHs to comprise less than 10−10 of the CDM
density. The constraints we use are from:

(i) The effect of PBH evaporation on big bang nucleo-
synthesis (BBN) [22,23];

(ii) The effect of PBH evaporation on the CMB [23,24],
EDGES [25,26], INTEGRAL [27], the 511 keV line
[28,29], Voyager [30], extragalactic gamma rays
[22], and the interstellar medium [31];

(iii) Microlensing by PBHs of EROS [32], HSC [33–35],
Kepler [36], and MACHO [37] objects;

(iv) The number of coalescences detected by LIGO-
Virgo [38,39];

1As discussed in Ref. [20], the isocurvature perturbation must
by definition satisfy a positive-energy bound Sð0Þðx⃗Þ ≥ −1. It
must also have zero mean. To allow for regions of large
Sð0Þðx⃗Þ ≫ 1, most of the universe should therefore have
Sð0Þðx⃗Þ ¼ −1 and be devoid of CDM. While this highly non-
Gaussian distribution does not impact our local perturbation
matching procedure, it can effect the abundance of large S regions
relative to a Gaussian. Whether this change enhances or sup-
presses the PBH abundance depends on the specific distribution
for S, and therefore we present here Gaussian results as simply a
first estimate.
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(v) Accretion onto PBHs altering the reionization his-
tory [40];

(vi) Dynamical disruption of wide binaries by
PBHs [41].

Additional constraints can be found compiled in, e.g.,
Refs. [42,43]. The constraints shown here are not necessarily

the strongest across their respective mass ranges (compare,
e.g., those from PBH gas heating [44]).
In the bottom panel of Fig. 3, we map these PBH

constraints into constraints on the smoothed primordial
CDM isocurvature amplitude σcðR; 0Þ, using Eq. (31) and
Eq. (32) with the full fMD (15) including the exponential

FIG. 3. Observational constraints on the PBH abundance relative to the CDM fPBH (top) can be mapped to constraints on the
primordial CDM overdensity σcðR; 0Þ (bottom). The scale kR ¼ γ=R which corresponds to a given PBH mass M depends on the
amplitude of the CDM fluctuation σcðR; 0Þ and therefore on the strength of the constraint on fPBH, with gray lines showing curves of
constantM. The requirement that fPBH < 1 provides an isocurvature constraint across all scales (dashed) which weakens slightly slower
than linearly in kR=keq [see Eq. (34)]. The formation time of the PBHs is roughly aNL ≃ σcðR; 0Þ−1, and the constraint on σcðR; 0Þ is
roughly equivalent to the constraint the primordial isocurvature ΔSðkRÞ for power-law isocurvature power spectra through Eq. (38). For
further discussion see Sec. IV.
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suppression from Eq. (16). Since constraints at given mass
M map to different primordial scales kR depending on the
amplitude of the constraint fPBH, we show lines of fixed
PBH mass M to guide the eye. The constraint fPBH < 1,
dashed, holds for all PBHs which have an evaporation time
longer than the age of the universe at BBN, corresponding
to masses M ≳ 10−24 M⊙. For constant fPBHðMÞ, the
constraint on σcðR; 0Þweakens slightly slower than linearly
in kR=keq, as derived in Eq. (36). The formation time of the
PBHs ξaNL ∼ ξ=σcðR; 0Þ can also be read from this figure.
We factor out the kR=keq scaling of our constraint on

σcðR; 0Þ by showing in Fig. 4 the intermediate matching
parameter σ̃ðR; ãHÞ ≃ k2eq=k2RσcðR; 0Þ2 [see Eq. (30)] that
goes into our computation and which directly determines
the PBH abundance at formation βðRÞ through Eqs. (15)
and (16). For larger values of kR=keq, the PBHs form earlier
in radiation domination and therefore the same abundance
today can be achieved with smaller β. The exponential
suppression of PBH formation (16) in the small σ̃ðR; ãHÞ
limit is reflected in the compression of logarithmically
spaced tick-marks in βðσ̃ðR; ãHÞÞ.
Finally, constraints on σcðR; 0Þ can be converted to

constraints on the primordial isocurvature spectrum
Δ2

SðkÞ through

σ2cðR; 0Þ ¼
Z

dk
k
WRðkÞ2Δ2

SðkÞ: ð37Þ

In principle the primordial power spectrum in Fourier space
can be reconstructed model independently if σ2cðR; 0Þ is
known across a wide range of scales [45], but results for
specific choice of WRðkÞ and Δ2

sðkÞ are illuminating. For
example, for a power-law isocurvature spectrum Δ2

S ¼
Aðk=k�Þniso−1 and a Fourier space top hat window function,
we have

σ2cðR; 0Þ ¼ Δ2
SðkRÞc1; ð38Þ

with c1 ≡ ð1 − ðkmin=kRÞniso−1Þ=ðniso − 1Þ a number which
diverges as an infrared cutoff kmin → 0 for niso ≤ 1 but
otherwise is generally of order unity. The constraint on
smooth, power-law isocurvature spectra can therefore be
obtained directly from Fig. 3.
For an isocurvature power spectrum characterized

instead by a log-normal peak at kP with width d and
amplitude AðkpÞ2 with functional form

Δ2
SðkÞ ¼ AðkpÞ2

1ffiffiffiffiffiffi
2π

p
d
exp

�
−
log2ðk=kpÞ

2d2

�
; ð39Þ

the variance of the smoothed density contrast is

σ2cðR; 0Þ ¼ AðkpÞ2
erfc
2

�
1ffiffiffi
2

p
d
ln

�
kp
kR

��
; ð40Þ

where erfcðxÞ ¼ 1 − erfðxÞ is the complimentary
error function, which has limits erfcðx ≪ 0Þ → 2,

FIG. 4. The value of the matched amplitude σ̃ðR; ãHÞ (left axis) of fluctuations of a matter-only universe which we use to compute the
PBH abundance at formation βðRÞ (right axis) through fMD [Eqs. (15) and (16)], as constrained by the PBH abundance today fPBH
(Fig. 3). This figure is equivalent to the lower panel of Fig. 3 with a kR=keq scaling factored out since σ̃ðR; ãHÞ ≃ k2eq=k2RσcðR; 0Þ2
[Eq. (30)]. At higher kR=keq, the PBHs form at earlier times in radiation domination and therefore a smaller value of β can yield the same
present day fPBH. For σ̃ðR; ãHÞ≳ 5 × 10−3, β is given by (15). For σ̃ðR; ãHÞ≲ 5 × 10−3, β becomes exponentially suppressed through
(16). For further discussion see Sec. IV.
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erfcðx ≫ 0Þ → 0. In the narrow peak limit d → 0, con-
straints on σcðR; 0Þ therefore place an upper bound on
AðkPÞ2 on all large scales kP < kR,

AðkpÞ2 ≲minðσcðkR > kP; 0Þ2Þ: ð41Þ

We show this constraint on the amplitude of a narrow
log-normal peak in the isocurvature power spectrum in
Fig. 5. Since the power spectrum scales as the square of the
perturbation, the constraint on the power spectrum ampli-
tude weakens slightly slower than quadratically.

V. DISCUSSION

We have a presented a new mechanism to form PBHs;
the collapse of large primordial CDM isocurvature fluctu-
ations. We have used this mechanism to provide constraints
on the amplitude of isocurvature perturbations between
∼103 Mpc−1 and 1017 Mpc−1 which are independent of the
dark matter model. Our constraints are much weaker than
those on the adiabatic mode, but we are aware of no a priori
reason why the CDM isocurvature mode could not be
so large.
Large isocurvature perturbations on small scales can be

formed from, e.g., an axion field [46] or the formation of
compact objects [47,48], but we are not aware of any model
which produces isocurvature perturbations of this size.
Our constraints assume the isocurvature fluctuations are
Gaussian, but any realistic model which produces suffi-
ciently large isocurvature must produce a highly skewed
non-Gaussian distribution which may impact the resulting
PBH abundance. We neglected baryons throughout our
calculation, an excellent approximation for PBHs formed
on very small scales deep in radiation domination since the
baryons are then energetically insignificant.

That PBHs can form from isocurvature perturbations of a
matter-like fluid if they are so large that they lead to a
significant total density perturbation as they enter the
horizon was perhaps first noted in Ref. [49], and such a
setup has been used to produce PBHs at the beginning of an
early matter-dominated epoch (see, e.g., [50–52]). Our
results are the first to make use of just primordial CDM
fluctuations evolving during a traditional cosmic history.
Our constraints extend to much smaller scales than

existing model-independent constraints. The CMB severely
constrains primordial CDM isocurvature up to scales k≲
0.1 Mpc−1 [2], and large scale structure and Lyman-α data
extend the constraints to megaparsec scales [53–56]. Future
21 cm constraints may reach k ∼ 1000 Mpc−1 [57,58], and
μ-distortions could in principle constrain up to k ∼
104 Mpc−1 [59].
Much more powerful constraints are possible assuming

specific dark matter models. If the dark matter annihilates
[60,61] or decays [62], for example, strong isocurvature
constraints can be placed from γ-ray and neutrino emission.
And if the dark matter is comprised of thermally produced
WIMPs, kinetic decoupling sets a cutoff in the small scale
CDM power spectrum [63].
An open question is the relationship of our results to

constraints on dark matter substructure [64–67], which is
the subject of significant recent interest and can be
constrained by, e.g., caustic microlensing [68–70] or
pulsar timing [71–75], but depends sensitively on the
nature of the dark matter and its nonlinear evolution. On
the same note, the details of our results rely on an
conjecture for the probability of CDM fluctuations to
collapse to PBHs, which deserves further validation from
numerical simulations.
As future constraints on PBH abundances arrive they can

be converted to improved CDM isocurvature constraints
using our results. However, because of the exponential
suppression of PBH formation in the small σ̃ðR; ãHÞ limit,
the constraints presented here can probably not be
improved dramatically, especially on the smallest scales.
The PBH constraints from evaporation, for example,
approach the exponential floor where future improvements
to fPBH can lead to only logarithmic improvements in the
isocurvature constraint. This is similar to PBH constraints
on small-scale adiabatic perturbations, where the abun-
dance is always exponential in the perturbation amplitude.
Instead, a key signal of large fluctuations on small scales

is the production of second-order induced gravitational
waves (see, e.g., [76] for a recent review). Constraints on
induced gravitational waves from future gravitational wave
detectors will lead to constraints on the small-scale adia-
batic spectrum stronger than the constraints from PBH
production. Following up on this work, the induced
gravitational wave signal from small-scale CDM isocurva-
ture perturbations which collapse during global radiation
domination is studied in Ref. [20].

FIG. 5. The constraint from PBH abundances on the amplitude
AðkpÞ2 of a log-normal peak at kp in the isocurvature power
spectrum Δ2

S in the narrow peak limit. The constraint on AðkpÞ2
degrades slightly slower than quadratically. For further discussion
see Sec. IV and Eq. (41).
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