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Abstract. We perturbatively study the effect of non-Gaussianities on the mass fraction of
primordial black holes (PBHs) at the time of formation by systematically taking its effect
into account in the one-point probability distribution function of the primordial curvature
perturbation. We focus on the bispectrum and trispectrum and derive formulas that describe
their effects on the skewness and kurtosis of the distribution function. Then considering the
case of narrowly peaked spectra, we obtain simple formulas that concisely express the effect
of the bi- and trispectra. In particular, together with the gNL and τNL parameters of the
trispectrum, we find that non-Gaussianity parameters for various types of the bispectrum are
linearly combined to give an effective parameter, f eff

NL, that determines the PBH mass fraction
in the narrow spectral shape limit.

Keywords: primordial black holes, physics of the early universe, cosmological perturbation
theory

ArXiv ePrint: 2208.02941

c© 2022 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2022/10/094

mailto:tmats@post.kek.jp
mailto:misao.sasaki@ipmu.jp
https://arxiv.org/abs/2208.02941
https://doi.org/10.1088/1475-7516/2022/10/094


J
C
A
P
1
0
(
2
0
2
2
)
0
9
4

Contents

1 Introduction 1

2 The abundance of PBHs from non-Gaussian initial conditions 2
2.1 Definitions 2
2.2 The abundance of PBHs 4
2.3 Non-Gaussian distributions 5

3 Skewness and kurtosis in models of primordial non-Gaussianity 7
3.1 Definitions 7
3.2 Skewness 8
3.3 Kurtosis 9

4 Power spectrum with a narrow peak 10

5 Numerical demonstrations 12

6 Conclusions 15

A High-peaks limit of the peaks model with non-Gaussianity 16

1 Introduction

The possibility that black holes may be formed in the very early universe was suggested about
half a century ago [1–3]. Since then it has been a topic of constant interest in cosmology,
but it has never been explored in depth. However, thanks to the rapidly growing interest
in gravitational wave cosmology in recent years, as well as to the theoretical progress and
technical developments, the primordial black holes (PBHs) have become one of the hottest
topics in cosmology today (for recent reviews, see e.g., [4, 5]).

One of the most studied PBH formation mechanisms is the collapse of a region with
a sufficiently large curvature perturbation, presumably produced from inflation, during the
radiation-dominated early universe. While such high peaks in the curvature perturbation
hardly exist in the conventional models of inflation, since there are virtually no stringent
observational constraint on cosmologically very small scales that are relevant for the PBH
formation, various models that can produce sufficiently abundant PBHs have been discussed
in the literature.

The abundance of PBHs produced in the early Universe plays a crucial role in the present
Universe. Depending on the typical mass of PBHs, various effects which are observationally
detectable are anticipated if the abundance is sufficiently large. There is no compelling
evidence for the existence of PBHs at any mass scale up to the present time. Hence, what we
have so far is the upper limit in the PBH abundance in broad ranges of mass scale (For a
recent review, see ref. [6]). If PBHs are formed from high peaks of the curvature perturbation,
an upper bound on the PBH abundance places an upper bound on the amplitude of the
primordial power spectrum. The observed amplitude of the power spectrum on scales of the
cosmic microwave background (CMB) and the large-scale structure (LSS) is too small to
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produce PBHs. However, scales relevant to the PBH formation are typically much smaller
than those scales. Thus, various mechanisms that give rise to the amplitude of the power
spectrum on small scales much larger than that on the CMB scale have been proposed (see,
e.g., ref. [7]). In many of those models, however, the non-Gaussianities in the curvature
perturbation are negligible or simply ignored. Nevertheless, even if they are small, they may
considerably affect the PBH formation, as it is acutely sensitive to non-Gaussian features in
the tail of the probability distribution function [8].

The effects of non-Gaussianity upon the abundance of PBHs have been investigated
by many authors using various methods [9–22]. However, in most of the previous work,
only the local-type of non-Gaussianity is considered. Even for the bispectrum, which is the
lowest non-trivial order in perturbation where the non-Gaussianity appears, only a limited
number of authors consider the other types, such as equilateral- and orthogonal-types of
non-Gaussianity [12, 14]. The effect of the trispectrum of non-Gaussianity on the abundance
have not been discussed much, while the clustering of PBHs in the presence of local-type
trispectra are considered in, e.g., refs. [23–25]. Thus, it is desirable to understand the effect
of various types of non-Gaussianity on the PBH formation more systematically.

In this paper, we analytically study the effect of non-Gaussianity up through the
trispectrum in a model-independent way as much as possible. To analytically address the
problem, we use a set of approximations that are valid in many situations. In the presence
of skewness and kurtosis in the primordial fluctuations with hierarchical orders, we derive a
formula for the non-Gaussian corrections to the abundance of PBHs in a high-peaks limit,
generalizing the known formula for the threshold. We also derive integral formulas to calculate
the values of skewness and kurtosis in popular models of non-Gaussianity, including local-,
equilateral-, folded- and orthogonal-type models for bispectrum, and generalized local-type
models for trispectrum. These integral formulas are further reduced to asymptotic formulas
of analytic forms by taking the limit of a sharply-peaked shape of the primordial spectrum.
The derived formulas provide useful apparatus for predicting the abundance of PBHs in a
variety of models.

This paper is organized as follows: in section 2, after the basic notations and definitions
we use in this paper are given, high-peaks formulas for the PBH formation are introduced.
In section 3, we derive integral formulas for skewness and kurtosis parameters for a class of
non-Gaussian models mentioned above, for an arbitrary shape of the primordial spectrum. In
section 4, the derived integral formulas are reduced to analytic forms by taking the sharply-
peaked limit of the spectrum. In section 5, we numerically evaluate the behavior of derived
formulas and demonstrate it in several cases.

2 The abundance of PBHs from non-Gaussian initial conditions

2.1 Definitions

First, we define the fundamental quantities used in this paper. The PBHs are considered
to be formed from large positive perturbations of the 3-dimensional curvature δR(3) at an
early stage of the Universe, well before the astrophysical structure formation takes place. The
3-dimensional curvature perturbation on comoving slices is characterized by the curvature
perturbation in Fourier space, denoted by R(k). In linear order, we have δR(3) = 4(k2/a2)R,
where a is the scale factor. Since the Einstein equations imply δR(3) ≈ 6H2∆ on or above
Hubble scales at linear order, where H = ȧ/a is the Hubble parameter and ∆ is the energy
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density contrast on comoving slices, large positive 3-dimensional curvature perturbations are
equivalent to large positive energy density fluctuations.

If its probability distribution is Gaussian, the statistical properties of the comoving
curvature perturbation are completely characterized by the power spectrum PR(k). The power
spectrum is the two-point correlation of the fluctuations in Fourier space, and is defined by

〈R(k1)R(k2)〉c = (2π)3δ3
D(k1 + k2)PR(k1), (2.1)

where δ3
D(k) is the Dirac’s delta function and 〈· · · 〉c denotes the cumulants or connected part

of the statistical average. For the two-point cumulant above, it can be replaced by a simple
average, assuming the mean value of curvature fluctuations is zero, 〈R〉 = 0.

The presence of non-Gaussianity gives rise to higher-order correlations, such as the
bispectrum, trispectrum, and so forth. The bispectrum BR(k1,k2,k3) and the trispectrum
TR(k1,k2,k3,k4) are three- and four-point functions in Fourier space, defined by

〈R(k1)R(k2)R(k3)〉c = (2π)3δ3
D(k1 + k2 + k3)BR(k1,k2,k3), (2.2)

〈R(k1)R(k2)R(k3)R(k4)〉c = (2π)3δ3
D(k1 + k2 + k3 + k4)TR(k1,k2,k3,k4). (2.3)

The three-point cumulant in eq. (2.2) again can be replaced by simple average because the mean
value is zero. However, the cumulant in eq. (2.3) cannot be replaced by simple average, and we
have 〈R1R2R3R4〉c = 〈R1R2R3R4〉 − 〈R1R2〉〈R3R4〉 − 〈R1R3〉〈R2R4〉 − 〈R1R4〉〈R2R3〉.
The appearance of Dirac’s delta functions in the above definition is due to the assumed
statistical homogeneity in 3-space with translational symmetry.

In general, in linear order, the relation between the comoving curvature perturbation R
and the density contrast ∆ on comoving slices is given by [26–28]

∆(k; t) =M(k)R(k) , (2.4)

where

M(k; t) = 2 + 2w
5 + 3w

(
k

aH

)2
, (2.5)

and w = p/ρ is the equation of state parameter. The PBH formation criteria are typically
described by smoothed density fields with a smoothing radius of the horizon scale, R = (aH)−1.
In the following, we assume the formation of PBHs takes place in a radiation-dominated
epoch, w = 1/3, and thus we use

M(k) = 4
9k

2R2 , (2.6)

for the coefficient of eq. (2.4).
The smoothed density field in configuration space is given by

∆R(x) =
∫

d3k

(2π)3 e
ik·x∆(k)W (kR) (2.7)

where W (kR) is the window function for the smoothing. In this paper, we adopt the Gaussian
window function,

W (kR) = exp
(
−k

2R2

2

)
. (2.8)
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2.2 The abundance of PBHs
The abundance of PBHs is frequently modeled by the initial mass fraction β of the universe
that turns into PBHs at the time of formation. One of the simplest and most commonly used
criteria for the PBH formation is to set a threshold density contrast ∆c. Then β may be
estimated by computing the fraction of space with ∆R(x) > ∆c in the initial density field.
This gives

βth =
∫ ∞
∆c

P (∆R;R) d∆R, (2.9)

where P (∆R;R) is the probability distribution function of the initial density field smoothed
over a horizon scale R. In the analogy to the Press-Schechter theory of structure formation [29],
a fudge factor 2 is sometimes put in front of the right-hand side (r.h.s.) of the above equation.
Our discussion below does not depend on whether this fudge factor is present or not. Another
criteria of the PBH formation is to use the peak theory [27, 30]. Given the number density of
peaks npk(∆c;R) of the smoothed density field above the threshold, ∆c, the mass fraction is
given by

βpk = (2π)3/2R3npk(∆c;R), (2.10)

where the prefactor (2π)3/2R3 corresponds to the effective volume of the Gaussian filter. There
is yet another formation for the threshold based on the so-called Compaction function [22, 31,
32]. But as its relation to the probability distribution function seems rather non-trivial, we
leave this case for future studies.

When the initial density field is given by a random Gaussian field, the one-point
probability distribution function is given by P = (2πσ2)−1/2e−∆R

2/(2σ2), where σ2 = 〈∆R
2〉

is the variance of the smoothed density field. In this case, eq. (2.9) is given by

βG
th = 1

2erfc
(
ν√
2

)
≈ 1√

2π
e−ν

2/2

ν
, (2.11)

where ν ≡ ∆c/σ is the normalized threshold. The last expression of the above equation is an
asymptotic form for a high threshold of ν � 1. The number density of peaks in a random
Gaussian field is calculated from the joint probability distribution of field derivatives and is
analytically given by an integral form [30]. An asymptotic form of the result for high peaks
(ν � 1) is given by

npk = 1
(2π)2

(
σ1

2

3σ2

)3/2

(ν2 − 1)e−ν2/2, (2.12)

where
σj

2 =
∫
k2dk

2π2 k
2jP∆(k)W 2(kR) (2.13)

and P∆(k) is the power spectrum of the density field ∆. The corresponding expression for
the mass fraction is given by

βG
pk = 1√

2π

(
Rσ1√

3σ

)3
(ν2 − 1)e−ν2/2. (2.14)

There are differences in the predictions of the two different models, eqs. (2.11) and (2.14)
with the Gaussian initial conditions. However, the overall shape is relatively close to each
other if we take a higher threshold value ν for the peak theory and the threshold theory for
reasonable ranges in the PBH mass [27, 28].
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2.3 Non-Gaussian distributions
The one-point distribution function of non-Gaussian fields are characterized by higher-order
cumulants 〈∆R

n〉c. We assume a hierarchical scaling of higher-order cumulants, 〈∆R
n〉c ∝

σ2n−2, and define reduced cumulants

Sn ≡
〈∆R

n〉c
σ2n−2 , (2.15)

which are considered to be of order unity or less. In general, the probability distribution
function in the integrand of eq. (2.9) can be expanded in an Edgeworth series,

P (∆R;R) = e−ν
2/2

√
2πσ

{
1 + S3

3! H3(ν)σ +
[
S4
4! H4(ν) + 1

2!

(
S3
3!

)2
H6(ν)

]
σ2

+
[
S5
5! H4(ν) + S3S4

3!4! H7(ν) + 1
3!

(
S3
3!

)3
H9(ν)

]
σ3 + · · ·

}
, (2.16)

where Hn(ν) = eν
2/2(−d/dν)ne−ν2/2 is the Hermite polynomial. In practice, one can truncate

the series in some order when the inequality σ � ν−3 is satisfied. The Edgeworth expansion
has been used to investigate the abundance of PBHs [12]. For high peaks, ν � 1, the truncated
Edgeworth expansion is only applicable for sufficiently small σ. Integrating the Edgeworth
series above, the mass fraction in the threshold model, eq. (2.9) reduces to

βth = βG
th + e−ν

2/2
√

2π

{
S3
3! H2(ν)σ +

[
S4
4! H3(ν) + 1

2!

(
S3
3!

)2
H5(ν)

]
σ2

+
[
S5
5! H3(ν) + S3S4

3!4! H6(ν) + 1
3!

(
S3
3!

)3
H8(ν)

]
σ3 + · · ·

}
. (2.17)

In the high-peaks limit, the mass fraction in the threshold model has been derived in
the context of biased structure formation, and the result is given by [33, 34]

βth ≈
1√
2π

e−ν
2/2

ν
exp

( ∞∑
n=3

νn

n!
〈∆R

n〉
σn

)
= ν−1
√

2π
exp

[
−ν

2

2

(
1− 2

∞∑
n=3

∆c
n−2

n! Sn

)]
. (2.18)

This result can also be obtained by summing up all the infinite series of the leading contributions
in the high-peaks limit Hn(ν)→ νn in the eq. (2.17). In this way, the abundance of PBHs
for non-Gaussian initial conditions in the high-peaks limit is characterized by the series of
reduced cumulants Sn.

The above formula for the non-Gaussianity in the high-peaks limit can be generalized to
the peaks model of eq. (2.14). The details of the derivation are given in appendix A. One
finds that the non-Gaussian contributions are the same as those in the high-peaks limit of the
threshold model. Namely,

βpk ≈
1√
2π

(
Rσ1√

3σ

)3
(ν2 − 1) exp

[
−ν

2

2

(
1− 2

∞∑
n=3

∆c
n−2

n! Sn

)]
. (2.19)

Therefore, irrespective of the formation models of PBHs, the effect of non-Gaussianity in the
high-peaks limit may be expressed in the generic form,

β ≈ βG exp
(
ν2
∞∑
n=3

∆c
n−2

n! Sn

)
= A(ν) exp

[
−ν

2

2

(
1− 2

∞∑
n=3

∆c
n−2

n! Sn

)]
, (2.20)
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where
βG = A(ν)e−ν2/2 (2.21)

is the mass fraction for the Gaussian initial condition, and A(ν) is the prefactor that depends
on the formation models of PBHs, i.e.,

A(ν) ≡ 1√
2π
×


ν−1 (threshold model),(
Rσ1√

3σ

)3
(ν2 − 1) (peaks model).

(2.22)

We note that the asymptotic formula (2.20) is consistent only when

2
∞∑
n=3

∆c
n−2

n! Sn < 1 , (2.23)

otherwise, the mass fraction β exceeds unity in the limit ν � 1. In this paper, we assume the
above condition is satisfied.

When the values of reduced cumulants Sn are of order unity, the above condition is
safely satisfied. For example, when all the reduced cumulants Sn have the same value, the
condition (2.23) with ∆c ' 1/3 implies Sn . 8. Thus it is not too restrictive. On the
other hand, if the condition (2.23) is not met, the asymptotic formula (2.20) breaks down.
This is because the resummation of leading contributions in the expansion in eq. (2.17) for
the threshold model is not justified as Sn are no longer of O(1). The same applies to the
resummation in the peaks model, eq. (A.16). For example, when higher-order cumulants of
a non-Gaussian model satisfy 〈∆R

n〉c ∼ O(σn) [instead of ∼ O(σ2n−2), cf., eq. (2.15)], the
resummation does not work [18].

Comparing eqs. (2.20) and (2.21), and noting ν = ∆c/σ, we find that the effects of
non-Gaussianity may be conveniently taken into account by replacing the threshold value for
the PBH formation in the exponent of the Gaussian prediction, eq. (2.21), as

∆c → ∆eff
c ≡ ∆c

√
1− S ; S ≡ 2

∞∑
n=3

∆c
n−2

n! Sn , (2.24)

apart from the prefactor A(ν). When S is positive, the tail of the distribution function
increases, which reduces the effective threshold in comparison with the Gaussian prediction,
and the number of PBHs increases. On the contrary, if S is negative, the number of PBHs
decreases. Thus, the expected number density of PBHs is exponentially sensitive to non-
Gaussianity. We note that the effective threshold above, ∆eff

c , does not apply to the prefactor
A(ν). Hence the effects of non-Gaussianity are not completely degenerate with the Gaussian
case, though the change in the exponent dominates the effect on the number density of PBHs.

When the observational constraint is given by β <β0, where β0� 1 and thus ln(1/β0)> 0,
eq. (2.20) implies

σ2 <
∆c

2

2 ln(1/β0) (1− S) , (2.25)

where the logarithm of the prefactor lnA(ν) is ignored, assuming ln(1/β0)� lnA(ν). There-
fore, an observational constraint on the upper limit of the amplitude of primordial spectrum√
PR is tighter for S > 0. If we only keep the leading term in S, S ∝ S3, this is in qualitative

agreement with the results in refs. [8, 14] at linear order in S3 (or in fNL as discussed in the
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next section). Nonlinear behaviors discussed in these references might be explained by the
effect of fNL

2 in the variance, σ2 ∼ σ2
G + (const.)× fNL

2σ4
G. However, for a narrowly peaked

power spectrum, the prefactor (const.) of this relation is suppressed by the width of the
spectrum, ε = ∆k/k0 � 1, where k0 is the peak of the spectrum.

In the non-Gaussian factor of eq. (2.20), the parameters of reduced cumulants, Sn, with
arbitrary higher orders equally contribute. In the following, however, we mainly focus on the
effects of bispectrum and trispectrum of the primordial fluctuations, which are responsible to
the skewness parameter S3 and the kurtosis parameter S4. When the higher-order cumulants
Sn with n ≥ 5 are absent, eq. (2.20) reduces to

β ≈ βG exp
[
ν2∆c

(
S3
6 + ∆cS4

24

)]
. (2.26)

The condition of eq. (2.23) in this case is given by

S3 + S4
12 . 9, (2.27)

for ∆c ' 1/3. The skewness and kurtosis parameters, S3 and S4, are determined by non-
Gaussian initial conditions. In the next section, we derive useful formulas to calculate these
parameters in typical models of primordial non-Gaussianity.

3 Skewness and kurtosis in models of primordial non-Gaussianity

3.1 Definitions
The reduced cumulants of third and fourth orders, S3 and S4, are called skewness and kurtosis
parameters, respectively. They are related to the bispectrum B(k1,k2,k3) and the trispectrum
T (k1,k2,k3,k4) of density field ∆ by

S3 = 1
σ4

∫
k123=0

B(k1,k2,k3)W (k1R)W (k2R)W (k3R), (3.1)

S4 = 1
σ6

∫
k1234=0

T (k1,k2,k3,k4)W (k1R)W (k2R)W (k3R)W (k4R), (3.2)

where we use an abbreviated notation, k1···n ≡ k1 + · · ·+ kn, and∫
k1···n=0

· · · ≡
∫

d3k1
(2π)3 · · ·

d3kn
(2π)3 (2π)3δ3

D(k1 + · · ·+ kn) · · · . (3.3)

The bispectrum and trispectrum of the density field are related to those of the curvature
perturbation by

B(k1,k2,k3) =M(k1)M(k2)M(k3)BR(k1,k2,k3), (3.4)
T (k1,k2,k3,k4) =M(k1)M(k2)M(k3)M(k4)TR(k1,k2,k3,k4). (3.5)

Substituting eqs. (2.6), (2.8), (3.4) and (3.5) into eqs. (3.1) and (3.2), we have

S3 = 1
σ4

(4
9

)3 ∫
k123=0

(k1R)2(k2R)2(k3R)2e−(k1
2+k2

2+k3
2)R2/2BR(k1,k2,k3), (3.6)

S4 = 1
σ6

(4
9

)4 ∫
k1234=0

(k1R)2(k2R)2(k3R)2(k4R)2e−(k1
2+k2

2+k3
2+k4

2)R2/2TR(k1,k2,k3,k4).

(3.7)
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The variance σ2 is the same as σ0
2 defined by eq. (2.13). That is

σ2 =
(4

9

)2 ∫ k2dk

2π2 (kR)4e−k
2R2

PR(k) , (3.8)

where PR(k) is the power spectrum of the comoving curvature perturbation.

3.2 Skewness
There are many models of primordial non-Gaussianity. One of the most commonly assumed
model for the bispectrum is the local-type [35–37], which is given by

BR(k1,k2,k3) = 6
5fNL [PR(k1)PR(k2) + cyc.] , (3.9)

where fNL is a parameter of non-Gaussianity amplitude, + cyc. represents the two terms
obtained by cyclic permutations of the preceding term with respect to k1, k2, k3. Among other
types of non-Gaussianity for the bispectrum, popular alternatives are the equilateral [38],
folded [39], and orthogonal [40] types. These may be constructed from the following elements
of the bispectrum:

BI
123 ≡ P1P2 + cyc., BII

123 ≡ (P1P2P3)2/3, BIII
123 ≡ P1

1/3P2
2/3P3 + 5 perm., (3.10)

where we denote P1 = PR(k1), P2 = PR(k2), P3 = PR(k3) for simplicity, and + 5 perm.
represents the 5 terms obtained by permutations of the preceding term. In terms of these
elements, the bispectrum for each type of non-Gaussianity is given by

Bloc
R = 6

5f
loc
NLB

I
123 , (3.11)

Beql
R = 18

5 f
eql
NL

(
−BI

123 − 2BII
123 +BIII

123

)
, (3.12)

Bfol
R = 18

5 f
fol
NL

(
BI

123 + 3BII
123 −BIII

123

)
, (3.13)

Bort
R = 18

5 f
ort
NL

(
−3BI

123 − 8BII
123 + 3BIII

123

)
. (3.14)

We introduce the skewness parameter elements corresponding to the above three elements
BA

123 (A = I, II, III) of the bispectrum as

SA3 ≡
1
σ4

(4
9

)3 ∫
k123=0

(k1R)2(k2R)2(k3R)2W (k1R)W (k2R)W (k3R)BA
123 . (3.15)

The skewness parameters for local, equilateral, folded, and orthogonal types, which we denote
by Sloc

3 , Seql
3 , Sfol

3 , Sort
3 , respectively, are given by linear superpositions of SA3 (A = I, II, III)

in exactly the same forms as eqs. (3.11)–(3.14),

Sloc
3 = 6

5f
loc
NLS

I
3, (3.16)

Seql
3 = 18

5 f
eql
NL

(
−SI

3 − 2SII
3 + SIII

3

)
, (3.17)

Sfol
3 = 18

5 f
fol
NL

(
SI

3 + 3SII
3 − SIII

3

)
, (3.18)

Sort
3 = 18

5 f
ort
NL

(
−3SI

3 − 8SII
3 + 3SIII

3

)
. (3.19)
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We note that, excluding the signs of fXNL (X = loc, eql, fol, ort) in the coefficients, Sloc
3 is

positive definite, while the sign of the other two is indeterminate. Given the values of fXNL,
these skewness parameters are uniquely determined once the primordial power spectrum
PR(k) is known. In the high-peaks limit, the effects of skewness in each non-Gaussian type
on the abundance of PBHs are given by substituting the results into eq. (2.26).

The skewness parameter elements are given by substituting eqs. (3.10) into eq. (3.15). To
represent the results in a convenient, compact form, we introduce the dimensionless curvature
perturbation power spectrum,

PR(k) ≡ k3PR(k)
2π2 . (3.20)

Changing the integration variables as p = k1R, q = k2R and r = |p + q|, where the variable
r describes the angular degrees of freedom, µ = p · q/(pq) = (r2 − p2 − q2)/(2pq), some of the
angular integrations may be analytically calculated to give

SI
3 = 3

σ4

(4
9

)3 ∫ ∞
0

dpdq e−p
2−q2

pq

[
(p2+q2+2)sinh(pq)

pq
−2cosh(pq)

]
PR

(
p

R

)
PR

(
q

R

)
,

(3.21)

SII
3 = 1

σ4

(4
9

)3 ∫ ∞
0

dpdq e−(p2+q2)/2pq

[
PR

(
p

R

)
PR

(
q

R

)]2/3 ∫ p+q

|p−q|

dr

2 r e−r
2/2
[
PR

(
r

R

)]2/3
,

(3.22)

SIII
3 = 6

σ4

(4
9

)3 ∫ ∞
0

dpdqp2q e−(p2+q2)/2
[
PR

(
p

R

)]1/3 [
PR

(
q

R

)]2/3 ∫ p+q

|p−q|

dr

2 e−r
2/2PR

(
r

R

)
.

(3.23)

Thus, all the skewness parameters in the three types of non-Gaussianity can be computed
from the above equations for an arbitrary power spectrum PR(k). The variance σ2 of eq. (3.8)
is similarly given by a one-dimensional integral:

σ2 =
(4

9

)2 ∫
dp p3e−p

2PR
(
p

R

)
. (3.24)

3.3 Kurtosis

In contrast to the case of the bispectrum, not so many variations in the types of the
primordial trispectrum have been proposed. Lacking considerations on the general types of
the trispectrum, here we focus on the most popular type, that is the generalized local-type [41],

TR(k1,k2,k3,k4) = 54
25gNL [P1P2P3 + 3 perm.] + τNL [P1P2P23 + 11 perm.] , (3.25)

where P23 = PR(|k2 + k3|), with gNL and τNL being the parameters. If the primordial
perturbations emerge from the quantum fluctuations of a single scalar field, the last parameter
is related to the parameter of the local-type bispectrum by τNL = (36/25)fNL

2 [42]. If multiple
scalar fields are involved, there is an inequality, τNL > (36/25)fNL

2 [43]. In this model, we
define elements of the trispectrum by

T I
1234 ≡ P1P2P3 + 3 perm., T II

1234 ≡ P1P2P23 + 11 perm.. (3.26)
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The corresponding elements of kurtosis are given by

SA4 ≡
1
σ6

(4
9

)4 ∫
k1234=0

(k1R)2(k2R)2(k3R)2(k4R)2W (k1R)W (k2R)W (k3R)W (k4R)TA1234,

(3.27)
where A = I, II. We note that both elements are positive definite, as clear from their definitions.
The resulting kurtosis for the local-type is given by

S4 = 54
25gNLS

I
4 + τNLS

II
4 . (3.28)

Once the primordial power spectrum is given, one can evaluate the kurtosis. The effect on the
abundance of PBHs in the high-peaks limit is given by substituting the result into eq. (2.26).

The kurtosis parameter elements are given by substituting eqs. (3.26) into eq. (3.27).
Changing integration variables as p = k1R, q = k2R, r = (k2 + k3)R, µ = p · r/(pr),
µ′ = −q · r/(qr), and expressing µ′ in terms of s = |q − r|, some of the angular integrations
can be analytically calculated (see ref. [44] for the same type of calculation). The results are

SI
4 = 4

σ6

(4
9

)4 ∫ ∞
0

dp dq dr e−p
2
e−(q2+r2)/2pr

×
[
(p2 + r2 + 2)sinh(pr)

pr
− 2 cosh(pr)

]
PR

(
p

R

)
PR

(
q

R

)∫ q+r

|q−r|

ds

2 e
−s2/2PR

(
s

R

)
,

(3.29)

SII
4 = 12

σ6

(4
9

)4 ∫ ∞
0

dp dq dr e−p
2−q2−r2 pq

r

[
(p2 + r2 + 2)sinh(pr)

pr
− 2 cosh(pr)

]
×
[
(q2 + r2 + 2)sinh(qr)

qr
− 2 cosh(qr)

]
PR

(
p

R

)
PR

(
q

R

)
PR

(
r

R

)
. (3.30)

The above formulas enable us to compute all the kurtosis parameters of the local type for an
arbitrary primordial power spectrum PR(k).

4 Power spectrum with a narrow peak

In the previous section, we derived formulas for the skewness and kurtosis that can be used
to evaluate their effects on the abundance of PBHs for a general primordial power spectrum.
In this section, we focus on the case of a narrowly peaked spectrum, which would lead to a
nearly monochromatic mass function of PBHs.

We consider the case that the primordial power spectrum peaked at a wavenumber k0.
When the sharpness of the peak is extreme, we can approximately substitute

f(k)PR(k)→ f(k0)PR(k), (4.1)

where f(k) is an arbitrary function of k. Applying this substitution, the variance of eq. (3.24)
reduces to

σ2 '
(4

9

)2
e−k0

2R2(k0R)4
∫
dk

k
PR(k) , (4.2)
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and the skewness parameter elements in eqs. (3.21)–(3.23) reduce to

SI
3 '

27
2

1
(k0R)4

[
(k0

2R2 + 1)sinh(k0
2R2)

k0
2R2 − cosh(k0

2R2)
]
, (4.3)

SII
3 '

9
8
ek0

2R2/2

k0
2R2

C2/3
3

C1
2 , (4.4)

SIII
3 '

27
4
ek0

2R2/2

k0
2R2

C1/3C2/3
C1

, (4.5)

where we have introduced
Cα ≡

∫
dk

k
[PR(k)]α . (4.6)

The integral range of the above is localized in the vicinity of k0. We note that SI
3 takes the

minimum value SI
3|min ≈ 4.93 at k0R ≈ 1.7. We also note that SII

3 and SIII
3 depend on the

detailed shape of the peak in the power spectrum through the integrals Cα.
Due to the assumption of a narrow peak, the values of integrals Cα are small. If we

characterize the narrowness of the power spectrum by ε in the space of wavenumber, we have
Cα ∼ O(ε) for α > 0. Thus the parameters SII

3 and SIII
3 are of order ∼ ε SI

3,

SI
3 � SII

3 , S
III
3 . (4.7)

This is a remarkable property of a narrow power spectrum that simplifies the bispectrum
in eqs. (3.11)–(3.14). For example, if the narrow shape of the power spectrum is given by a
rectangular function of width k0ε,

PR(k) =

A0, if 1− ε

2 ≤
k

k0
≤ 1 + ε

2 ,

0 otherwise,
(4.8)

where A0 is a normalization constant, then we have Cα = A0
αε, which gives

SII
3 '

9ε
8
ek0

2R2/2

(k0R)2 , SIII
3 '

27ε
4
ek0

2R2/2

(k0R)2 . (4.9)

If the narrow shape is given by a Gaussian function of the full width at half maximum
(FWHM)1 k0ε,

PR(k) = A0 exp
[
−4 ln 2
k2

0ε
2 (k − k0)2

]
, (4.10)

then we have Cα =
√
π/ ln 2α−1/2A0

αε, which gives

SII
3 '

81π1/2ε

32
√

6 ln 2
ek0

2R2/2

(k0R)2 , SIII
3 '

81π1/2ε

8
√

2 ln 2
ek0

2R2/2

(k0R)2 . (4.11)

In any case, these parameters are much smaller than SI
3 by a factor of ε.

Due to this property, the skewness parameters in eqs. (3.16)–(3.19) are solely determined
by a single element SI

3. Taking account of contributions from all types, the skewness of the
density field is given by

S3 '
6
5
(
f loc

NL − 3f eql
NL + 3f fol

NL − 9fort
NL

)
SI

3. (4.12)

1FWHM for a normal distribution of standard deviation σ is given by 2
√

2 ln 2σ ' 2.35482σ.
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Thus different types of non-Gaussianity give the same form of skewness with different ampli-
tudes. This means that one cannot distinguish non-Gaussian types only with the amplitude
of the skewness. Apart from the numerical coefficients and the signs in (4.12), this fact may
be considered rather trivial because the abundance of PBHs is just a single number. Different
non-Gaussian types cannot be distinguished by a single number.

Similarly, the substitution of eq. (4.1) in eqs. (3.29) and (3.30), the kurtosis parameter
elements are given by

SI
4'

243
8

1
(k0R)8

{
−e−k0

2R2 sinh
(
2k0

2R2
)

+ e3k0
2R2/2

4k0R

√
2π
[
2−3erfc

(
k0R√

2

)
+erfc

(3k0R√
2

)]}
,

(4.13)

SII
4 '

243
(k0R)8

[
(k0

2R2+1)sinh(k0
2R2)

k0
2R2 −cosh(k0

2R2)
]2

' 4
3
(
SI

3

)2
. (4.14)

The narrowness parameter ε discussed above cancels in this case, and therefore SI
4 and SII

4
are equally of order unity in ε. Hence both parameters do not depend on the detailed shape
of the peak, as in the case of SI

3.
Taking into account all the leading contributions to the skewness and kurtosis, the

mass fraction with non-Gaussianity given by eq. (2.26) in the high peaks limit with a narrow
spectrum may be expressed in a single formula,

β ' βG exp
{
ν2∆c

[1
5f

eff
NLS

I
3 + ∆c

12

(27
25gNLS

I
4 + 2

3τNL(SI
3)2
)]}

, (4.15)

where
f eff

NL ≡ f loc
NL − 3f eql

NL + 3f fol
NL − 9fort

NL , (4.16)

irrespectively of the detailed shape of the narrow peak. The evaluation of the above formula
requires only two parameters of skewness and kurtosis, SI

3 and SI
4.

For the Gaussian part of the mass fraction, βG, the peaks model, eq. (2.22), contains
a factor Rσ1/σ. Taking the limit of a narrow spectrum in eq. (2.13), we obtain σj = k0

jσ.
Therefore, we have

βG = e−ν
2/2

√
2π
×


ν−1, (threshold model),(
k0R√

3

)3
(ν2 − 1), (peaks model),

(4.17)

in the limit of a narrow spectrum.

5 Numerical demonstrations

In this section, to obtain an intuitive sense of our results, and to find the range of validity of
the narrow-peak limit approximation of the spectrum, we numerically evaluate the formulas
we derived in the previous section.

In the left panel of figure 1, the skewness parameter elements, SI
3, SII

3 and SIII
3 computed

from eqs. (4.3)–(4.5) in the narrow peak limit are shown as functions of k0R. The element SI
3

does not depend on the precise shape of the spectrum in the narrow limit, while the other two
elements, SII

3 and SIII
3 , depend on the shape of the narrow peak, hence the rectangular case,
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Figure 1. Left panel: elements of skewness parameters as a function of k0R in the narrow limit
of spectral shapes. The elements SI

3, SII
3 and SIII

3 are plotted. For the latter two, they depend on
the shape of the narrow power spectra. Rectangular shapes are indicated by “Rec” and Gaussian
shapes are indicated by “Gau” in the labels of the curves, and the narrowness parameter is taken to
be ε = 0.03 in the plot as an example. For another value of the narrowness parameter, SII

3 and SIII
3

are simply proportional to ε in the plot. Right panel: elements of kurtosis parameters in the narrow
limit of spectral shapes. The elements SI

4 and SII
4 are plotted. These parameters do not depend on the

details of the shapes of the narrow spectra.

eq. (4.8) and the Gaussian case, eq. (4.10) are presented. The width of the peak characterized
by the narrowness parameter ε is taken to be ε = 0.03 in the plot just for illustration. We
recall that the elements SII

3 and SIII
3 are simply proportional to ε. As seen from figure 1, SI

3
dominates the others when ε is small. For the value of ε = 0.03, SI

3 is approximately an order
of magnitude larger than the other two.

In the right panel of figure 1, the kurtosis parameter elements, SI
4 and SII

4 computed
by using eqs. (3.29) and (3.30) are shown in the narrow peak limit. Both of these two do
not depend on the precise shape of the narrowness parameter ε, and both contribute to the
kurtosis parameter, irrespective of the narrowness of the spectrum. Since the values of the two
elements SI

4 and SII
4 are roughly of O(101)-O(102), eq. (2.27) requires that the parameters gNL

and τNL should be somewhat smaller than unity to satisfy the condition for the consistency
of the approximation.

In the left panel of figure 2, comparisons of the narrow limit approximation with the
exact numerical results are made for the skewness parameter elements, SI

3, SII
3 and SIII

3 , and
for the kurtosis parameter elements, SI

4 and SII
4 . The right panel shows the comparison of the

exact integrations of eqs. (3.21)–(3.23) with the narrow limit approximation for the elements
of skewness. The narrow limit of SI

3 is independent of ε, while those of SII
3 and SIII

3 are linearly
proportional to ε. The curved lines represent the exact numerical results, and they converge
to the corresponding results in the narrow limit approximation as ε → 0. As can be seen
from the plot, the approximation of the narrow limit is accurate for ε . 0.3. For larger values
of ε, the approximations are still fairly good, although the value of SIII

3 is non-negligible in
comparison to that of SI

3.
In the right panel of figure 2, the kurtosis parameter elements are similarly compared.

The narrow limits are given by the constant lines, while the exact numerical results are given
by the curved lines. The narrow limit approximation is also valid for sufficiently small ε,
though the range of validity seems slightly smaller, ε . 0.2 in comparison with the case of the
skewness.
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Figure 2. Left panel: comparisons between exact integrations and approximations of the narrow limit
of primordial spectrum for three elements of the skewness parameter, SI

3, SII
3 and SIII

3 , as functions
of the narrowness parameter ε. The spectral shape is assumed to have the rectangular shape, and
k0R =

√
2. In the limits that the narrowness parameter ε is small, the approximation of the narrow

limit and the results of exact integrations converge to the same lines to the left. The lines of the
narrow limit are given by straight lines as the narrow limit of SI

3 is constant and those of the other
are linearly proportional to ε. Curved lines above the straight lines correspond to the results of exact
integrations. Right panel: same as the left panel, but elements of skewness parameter are compared.

S
3

Ι

S
3

II

S
3

III

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

ϵ

S
4

Ι

S
4

II

0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

ϵ

Figure 3. Same as the figure 2, but the Gaussian shape of the power spectrum is assumed.

In figure 3, the same comparisons as figure 2 are made, but for the Gaussian shape of
the spectrum. The narrow limits of SI

3, SI
4 and SII

4 are the same as those in figure 2 because
they do not depend on the precise shape of the narrow spectrum. However, the narrow limits
of the elements SII

3 and SIII
3 , as well as the exact numerical results of all the elements do

depend on the precise shape of the spectrum. As seen from the figures, the narrow limit
approximation is slightly worse than that in the rectangular case for the same value of ε. The
gradient of SIII

3 as a function of ε is larger in the Gaussian case than in the rectangular case.
This results in the fact that SIII

3 is non-negligible in comparison with SI
3 already for mildly

small values of ε.
In figure 4, we show the PBH mass fraction β for the threshold model (left panel) and

for the peaks model (right panel) in the narrow spectral shape limit, given by eq. (4.15). In
this limit, the mass fraction does not depend on the precise shape of the spectrum, nor the

– 14 –



J
C
A
P
1
0
(
2
0
2
2
)
0
9
4

0.02 0.04 0.06 0.08 0.10

10
-31

10
-21

10
-11

0.1

σ

β
th

0.02 0.04 0.06 0.08 0.10

10-31

10-21

10-11

0.1

σ

β
p

k

Figure 4. Left panel: the mass fraction as a function of amplitude σ of the primordial spectrum
with the threshold model. The narrow limit of the spectral shape is assumed. The lower (blue)
curve corresponds to the Gaussian initial condition and the upper (orange) curve corresponds to the
non-Gaussian initial condition given by a model of eq. (4.15) with the narrow limit of spectrum and
parameters are given by ∆c = 1/3, f eff

NL = gNL = τNL = 0.2, and k0R =
√

2. Right panel: same as the
right panel but with the peaks model.

precise value of the narrowness parameter. The adopted values of the parameters in the plot
are ∆c = 1/3, f eff

NL = gNL = τNL = 0.2, and k0R =
√

2. As can be seen in the figure, the PBH
mass fraction is significantly enhanced for positive values of the non-Gaussian parameters
f eff

NL, gNL, and τNL.
The peaks model is known to predict a larger mass fraction than the threshold model for

Gaussian initial conditions [45]. In the narrow spectral shape limit, however, the non-Gaussian
factor in the exponent of eq. (4.15) does not depend on whether the formation criterion is
determined by the threshold or peaks model, because it contains only SI

3 and SI
4, given by

eqs. (4.3) and (4.13), respectively, which are independent of formation criteria. Therefore, the
enhancement factor for the non-Gaussian case in comparison with the Gaussian case is the
same for both panels.

6 Conclusions

In this paper, we considered the effect of primordial non-Gaussianities on the abundance of
PBHs in the conventional PBH formation scenario in which a PBH is formed from a rare,
large positive curvature perturbation at a radiation-dominated stage in the early universe.
We first presented a general series form of the one-point distribution function with arbitrary
non-Gaussianities. Then we derived an asymptotic formula for the PBH mass fraction at
the time of formation in the high-peaks limit. The asymptotic formula for the threshold
model for the PBH formation has been known. In this paper, we specifically derived the
asymptotic formula for the peaks model and found that the enhancement factor is identical
in both models if the non-Gaussianities are the same.

Next, we focused on the effect of skewness and kurtosis on the abundance for a few specific
models of non-Gaussianity. The skewness and kurtosis are calculated from the bispectrum
and trispectrum. For the bispectrum, we considered non-Gaussian models which are described
by superpositions of specific forms of the bispectrum given by eq. (3.10), which include
popular models such as the local-type, equilateral-type, folded-type and orthogonal-type
non-Gaussianities. The integral formulas to calculate the skewness parameter in this series
of models were derived in eq. (3.21)–(3.24). For the trispectrum, we considered a local-type
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model given by eq. (3.25). The integral formulas of kurtosis parameter were derived in
eqs. (3.29) and (3.30).

The integral formulas to obtain skewness and kurtosis parameters are numerically not
so difficult to evaluate. However, to obtain a clear, intuitive understanding of the results, we
considered the case when the primordial curvature perturbation power spectrum is sharply
peaked at a scale k0 with the width ∆k = εk0 where ε (< 1) is the narrowness parameter.
As a result, the precise shape of the spectrum gives only subdominant contributions to the
resulting skewness and kurtosis parameters, as shown in eqs. (4.3), (4.7), (4.13) and (4.14).
In the limit ε→ 0, we obtained an asymptotic formula for the PBH mass fraction, eq. (4.15)
for various types of non-Gaussianities of the bispectrum and trispectrum. In particular, we
found that the non-Gaussianity parameters for various types of the bispectrum are linearly
combined to give an effective f eff

NL that determines the PBH mass fraction.
In this paper, we simply assume a linear relation between the curvature perturbation and

the density contrast in eq. (2.4), and also assume formation models of PBHs with threshold
and peaks criteria with a fixed value of the threshold. These assumptions are employed in
order to make it possible for us to analytically treat the problem. It is not obvious that these
simplistic assumptions hold in realistic situations [18, 21, 49]. However, since our non-Gaussian
corrections in the high-peaks limit change the abundance only through a multiplicative factor,
as given by eq. (2.20), whose form is common to the two different formation models, namely,
the threshold model and the peaks model. Therefore, one may expect that this non-Gaussian
factor in the high-peaks limit is universal, not depending on the details of the formation
models that can be more complicated than those we assume in this paper. Unfortunately,
however, it is difficult to prove this expectation within the context of this paper, as the
derivation of our formula in the case of the peaks model, for instance, is already complicated
enough. Therefore, we leave this issue for future studies.

We systematically studied the effect of non-Gaussianities on the mass fraction of PBHs
at the time of formation at the level of bispectrum and trispectrum. We only considered
the one-point distribution function of the curvature perturbation, we have no clue about
non-Gaussianity effects on the spatial distribution of PBHs. The effects of bispectrum
and trispectrum on the PBH clustering are investigated and discussed in refs. [23–25]. It
seems there has been no further systematic analysis of non-Gaussianity effects on the spatial
distribution of PBHs in general situations. This issue certainly deserves further studies.
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A High-peaks limit of the peaks model with non-Gaussianity

In this appendix, we derive the formula of eq. (2.19) for the mass fraction in the high-peaks
limit of the peaks model with primordial non-Gaussianity. We rely on the fact that the
number of peaks above a threshold ν asymptotically approach to the Euler characteristic of
the three-dimensional body of the regions where ∆R > νσ is satisfied. The expected value of
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Euler characteristic in non-Gaussian fields above a threshold ν is formally given by [46–48]

nχ(ν) =
〈

exp
( ∞∑
n=3

1
n!

∑
µ1,··· ,µn

M
(n)
µ1···µn

∂n

∂Aµ1 · · · ∂Aµn

)
Fχ(A, ν)

〉
G

. (A.1)

Various quantities in this equation are defined below in order. The 10-dimensional vector of
variables A is composed of normalized variables,

A = (α, yi, Zij) , (A.2)

with 1 ≤ i ≤ j ≤ 3, where

α = ∆R

σ0
, yi =

√
3 ∂i∆R

σ1
, Zij = 3

γ

∂i∂j∆R

σ2
+ δij

∆R

σ0
, (A.3)

∂i = ∂/∂xi is a coordinate derivative, and

γ = σ1
2

σ0σ2
(A.4)

is a spectral parameter, and σj is defined by eq. (2.13). The n-point cumulants of the variables
A are denoted by

M
(n)
µ1···µn = 〈Aµ1 · · ·Aµn〉c . (A.5)

A local function for the number density of the Euler characteristic is given by

Fχ(A, ν) =
(

σ1√
3σ0

)3
Θ(α− ν)δ3

D(y) det(αI − Z), (A.6)

where Θ(x) is a step function and δ3
D(y) is the 3-dimensional Dirac’s delta function, and I is

the 3× 3 unit matrix. Finally, we define a Gaussian average by

〈· · · 〉G = 1
(2π)5

√
detM

∫
d10A · · · exp

(
−1

2ATM−1A

)
, (A.7)

where M = (M (2)
µ1µ2) is a 10× 10 matrix of two-point cumulants. The two-point cumulants

are explicitly given by〈
α2
〉

= 1, 〈αηi〉 = 0, 〈αZij〉 = 0, 〈yiyj〉 = δij , 〈ηiZjk〉 = 0,

〈ZijZkl〉 = 3
5γ2 (δijδkl + δikδjl + δilδjk)− δijδkl. (A.8)

Expanding the operators in the exponent of eq. (A.1), we have the following type of
factor in the expansion:〈

∂m0

∂αm0

∂m1

∂yi′1 · · · ∂yi′m1

∂m2

∂Zi1j1 · · · ∂Zim2jm2

Fχ

〉
G
. (A.9)

This factor is equivalent to [48](
σ1√
3σ0

)3 ∫ ∞
ν
dν

(
− d

dν

)m0
[
〈δD(α− ν)〉G

〈
∂m1δ3

D(y)
∂yi′1 · · · ∂yi′m1

〉
G

〈
∂m2 det(νI − Z)
∂Zi1j1 · · · ∂Zim2jm2

〉
G

]
,

(A.10)
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because the three kinds of variables α, yi and Zij are mutually independent in the Gaussian
averages with two-point cumulants. The Gaussian distribution functions of the variables α
and yi are given by

P
(0)
G (α) = e−α

2/2
√

2π
, P

(1)
G (y) = e−|y|

2/2

(2π)3/2 , (A.11)

and the first two factors in the square bracket reduce to

〈δD(α− ν)〉G = e−ν
2/2

√
2π

,

〈
∂m1δ3

D(y)
∂yi′1 · · · ∂yi′m1

〉
G

=


(−1)m1/2(m1 − 1)!!

(2π)3/2 δ(i′1i′2 · · · δi′m1−1i
′
m1 ), (m1 : even),

0, (m1 : odd),
(A.12)

where parentheses in the subscript of Kronecker’s delta indicate the symmetrization of the
indices inside them. For the last factor, we have an identity for the 3× 3 matrices,

det(νI − Z) = ν3 − ν2 trZ + ν

2
[
(trZ)2 − tr

(
Z2
)]
− detZ. (A.13)

For a fixed number of derivatives in eq. (A.9), m ≡ m0 + m1 + m2, one can see that the
dominant contribution in the high-peaks limit, ν → ∞, is given by a case of m0 = m,
m1 = m2 = 0. In this case, we have 〈det(νI − Z)〉G = H3(ν) due to eqs. (A.8) and (A.13),
and eq. (A.10) reduces to

1
(2π)2

(
σ1√
3σ0

)3
e−ν

2/2Hm+2(ν) (A.14)

in the high-peaks limit. When the replacement Hm+2(ν) → H2(ν)νm in the same limit
is applied for each term of the expanded series of eq. (A.1), the resulting infinite series is
resummed again. Thus we have

nχ(ν) ≈ 1
(2π)2

(
σ1√
3σ0

)3
e−ν

2/2H2(ν) exp
( ∞∑
n=3

νn

n! 〈α
n〉c

)
. (A.15)

Identifying the number density of peaks with the Euler number density in the high-peaks
limit, the mass fraction of peaks is given by

βpk ≈ (2π)3/2R3nχ(ν) ≈ 1√
2π

(
Rσ1√

3σ

)3
(ν2 − 1)e−ν2/2 exp

( ∞∑
n=3

νn

n! 〈α
n〉c

)
. (A.16)

The cumulants of α are given by 〈αn〉c = σn−2Sn where Sn is the reduced cumulants defined
by eq. (2.15), and the above equation is equivalent to eq. (2.20).
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