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1 Introduction

Triggered by the discovery of gravitational waves (GWs) from a merging black hole binary
by LIGO-Virgo Collaboration [1] and subsequent discoveries of many merging compact
binaries, GWs have become one of the hot topics in astrophysics and cosmology. In par-
ticular, a lot of attention has been paid to possible GW signatures from the early universe
in the last few years. Among them, one of the important sources of GWs is the one that
comes from vacuum fluctuations during inflation [2, 3].

Conventionally the tensor mode (graviton) vacuum fluctuations are considered to be
in the adiabatic vacuum as in the case of the scalar mode vacuum fluctuations. In this
case, the amplitude is uniquely determined by the Hubble parameter H during inflation,
namely, it is characterized by the tensor power spectrum proportional to H2(tk) where tk
is the time at which the mode with comoving wavenumber k left the Hubble horizon, and
the bispectum is known to be small.

However, there have been several proposals that may alter this prediction. One of such
is the case of modified gravity, e.g., Horndeski theory, massive gravity, etc. Furthermore, it
has been suggested that the quantum nature of the graviton state may be observationally
detected if gravitons were not in the adiabatic vacuum [4, 5]. This motivates us to study
possible non-Gaussianities for non-adiabatic initial states. In this paper, without specifying
a particular model, we consider a vacuum state that deviates from the adiabatic one. More
precisely, assuming that the inflationary stage can be approximated by a pure de Sitter
space (or it can indeed be pure de Sitter in the case of false vacuum inflation [6] or the false
vacuum stage prior to vacuum tunneling in open inflation [7, 8]), we consider the general
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α-vacuum for the tensor perturbation, and compute the spectrum and bispectrum without
assuming that the deviation from the BD vacuum is small.

The α-vacuum is known to be the general de Sitter invariant vacuum, specified by a real
parameter α and a phase φ [9]. The case α = 0 is called the Bunch-Davies (BD) vacuum
and it corresponds to the adiabatic vacuum in the general slow-roll inflation. A non-zero
value of α means a deviation from the adiabatic vacuum, independent of the phase φ.

The 3-point correlation function for primordial tensor fluctuations in the BD vacuum
is first calculated in [10], and an extensive discussion on the possible forms of tensor non-
Gaussianities due to the cubic Weyl terms are given in [11–13]. The tensor bispectrum in
the α-vacuum are calculated for squeezed configurations in [14]. In [15], both squeezed and
folded configurations of the bispectrum are considered with the assumption that there was
a transition from the BD vacuum to an α-vacuum at an early epoch. In the case of the
scalar perturbation, the 3-point function for the general α-vacuum was derived in [16, 17].

In the case of the conventional slow-roll inflation, deviations from the adiabatic vacuum
give rise to extra energy density carried by the field, and the condition that this extra energy
density be smaller than the vacuum energy density responsible for inflation places a severe
constraint on these deviations [18]. Thus, in particular, in many of the previous studies on
the tensor perturbation in the α-vacuum, only small deviations from the BD vacuum were
discussed [19]. However, thus obtained constraints from the backreation arguments depend
not only on the energy scale of inflation but also on the wavenumbers under consideration.
Furthermore, in the case of false vacuum inflation when the spacetime is pure de Sitter, it
seems there is no strong reason why the state cannot be in a non-trivial (α 6= 0) α-vacuum,
as it respects the full de Sitter invariance. At the least, it is worth presenting the explicit
form of the tensor bispectrum for the general α-vacuum without any approximations.

The paper is organized as follows. In section 2, We briefly review the quantization
of the tensor perturbation in de Sitter space, describe the α-vacuum, and present the
action up through cubic self-interactions. For the cubic self-interactions, we focus on the
case of general relativity as its presence seems robust independent of models of interest.
In section 3, we compute the 2-point and 3-point functions in momentum space, which
correspond to the spectrum and bispectrum, respectively, for the general α-vacuum. We
find that the resulting bispectrum can become arbitrarily large, while the power spectrum
is kept small, or even significantly suppressed for a particular choice of the phase φ. As
particular cases of interest, we then take the squeezed and folded limits. The result for the
squeezed configuration is in agreement with [14]. Section 4 is devoted to conclusions and
discussion. Some technical details are deferred to appendix A.

2 Graviton in de Sitter space

The graviton in a spatially flat expanding background may be represented by the tensor
mode perturbation in the three-dimensional metric,

ds2 = a2 (η)
[
−dη2 + (δij + γij) dxidxj

]
, (2.1)
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where η is the conformal time and the metric perturbation γij satisfies the transvers trace-
less condition γij

,j = γii = 0. Here and in what follows the spatial indices i, j, k, · · · are
raised and lowered by δij and δk`.

We focus on general relativity. The Einstein-Hilbert action up through the third order
in hij ≡ Mpl

2 γij is given by

S =
M2

pl
2

∫
d4x
√
−g R = S2 + S3 , (2.2)

where M2
pl = 1/(8πG) and

S2 = 1
2

∫
d4x a2

[
hij ′ h′ij − hij,k hij,k

]
, (2.3)

S3 = 1
Mpl

∫
d4x a2

[
hij hk`,i h

k`
,j − 2hij hik,` hj`,k

]
. (2.4)

Here, a prime denotes the derivative with respect to the conformal time.

2.1 Free graviton in de Sitter space

At quadratic order, we expand hij(η, xi) in the Fourier modes,

hij(η, xi) =
∫

d3k

(2π)3/2

∑
A

hAk (η) eik·x eAij(k) , (2.5)

where eAij(k) is the polarization tensor for the k mode, normalized as eijAeBij = δAB with
A,B = +,×. Then the quadratic action, (2.3), is rewritten as

S2 = 1
2

∫
dη d3k

∑
A

a2
[
|hA ′k (η)|2 − k2 |hAk (η)|2

]
, (2.6)

where k = |k|. The tensor mode hAk (η) satisfies

hA ′′k + 2a
′

a
hA ′k + k2hAk = 0 . (2.7)

Quantizing the above, the Fourier mode hAk (η) is promoted to an operator, and it may
be expressed in terms of the creation and annihilation operators as

hAk (η) = bAk uk(η) + bA†−k u
∗
k(η) , (2.8)

where
[
bAk , b

B†
p

]
= δABδ(k−p), and the canonical commutation relation implies the Klein-

Gordon normalization condition on the mode function uk(η) called the positive frequency
function,

uku
∗
k
′ − u′ku∗k = i

a2 . (2.9)

In the case of de Sitter space, the scale factor is given by a(η) = −1/(Hη) where
−∞ < η < 0. The de Sitter space is symmetric under SO(4,1) transformations. It is
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known that there are infinitely many vacua that respect the de Sitter symmetry, called the
α-vacua. Among them, a unique vacuum that corresponds to the adiabatic vacuum in an
expanding universe is the BD vacuum. Assuming bAk is the operator that annihilates the
BD vacuum, bAk |0k〉BD = 0, the corresponding mode function uk is given by

uk(η) = H√
2k3

(1 + ikη) e−ikη . (2.10)

For an α-vacuum, we consider another expansion of hAk (η),

hAk (η) = cAk vk(η) + cA†−k v
∗
k(η) , (2.11)

where
[
cAk , c

B†
p

]
= δABδk,p, and cAk annihilates the α-vacuum, cAk |0k〉α = 0. The mode

functions and the creation and annihilation operators for the α-vacuum are related to
those for the BD vacuum by the Bogoliubov transformation,

vk(η) = coshαuk(η) + eiφ sinhαu∗k(η) , (2.12)
cAk = coshα bAk − e−iφ sinhα bA†−k , (2.13)

where and below we assume 0 ≤ α <∞ and 0 ≤ φ < 2π without loss of generality.
The α-vacuum is a squeezed state from the point of view of the BD vacuum, and it

may also be regarded as an entangled state. Applying eq. (2.13) to cAk |0k〉α = 0 gives(
coshα bAk − e−iφ sinhα bA†−k

)
|0k〉α = 0 . (2.14)

This leads to the expression of the α-vacuum in terms of the BD vacuum as

|0k〉α = Nk exp
[
eiφ tanhα bA†k bA†−k

]
|0k〉BD|0−k〉BD , (2.15)

where Nk is a normalization constant. If we expand the exponential function in Taylor
series, we find

|0k〉α = Nk

(
|0k〉BD ⊗ |0−k〉BD + eiφ tanhα |1k〉BD ⊗ |1−k〉BD + · · ·

+einφ tanhn α |nk〉BD ⊗ |n−k〉BD
)
. (2.16)

This is a two-mode squeezed state which consists of an infinite number of entangled par-
ticles. In particular, in the highly squeezing limit α → ∞, the α-vacuum becomes the
maximally entangled state from the point of view of the BD vacuum.

Before closing this subsection, let us mention the issue of backreaction. It has been
argued that any state that substantially deviates from the adiabatic vacuum would cause
a backreaction problem because there would be a large number of excited particles with
respect to the adiabatic vacuum (BD vacuum in the case of de Sitter space) as given
in (2.16), whose energy density would dominate the universe and nullify inflation [18]. If
we apply this picture to our case, any non-trivial α-vacuum would not be allowed as the
parameter α is independent of the comoving momentum k.
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In this paper, as we mentioned briefly in the introduction, we take a more flexible point
of view. In the case of conventional slow-roll inflation, the adiabatic vacuum is indeed the
unique, physically most motivated vacuum. Hence we consider the k-independence as an
approximation, and assume it applies only to momenta satisfying k < kmax for a certain
maximum kmax as well as to the range of time ηi < η for a certain initial time ηi, so that
there would arise no backreaction problem. In addition, to simply the computations we
assume k|ηi| � 1 for the range of momenta of interest so that we may ignore the initial time
dependence. On the other hand, in the case of false vacuum inflation where the spacetime
is exactly de Sitter, since all α-vacua are de Sitter invariant, we accept the possibility of
an α-vacuum as it is. In either case, we proceed to computing the leading order graviton
non-Gaussianity in the α-vaccum, hoping that it may shed some light on the initial state
of the universe.

2.2 Interaction picture in the in-in formalism

In terms of the Fourier mode operators hAk (η), the cubic action eq. (2.4) is rewritten as

S3 ≡
∫
dη L3 ;

L3 = − a2

Mpl(2π)3/2

∑
A1A2A3

∫
d3p1

∫
d3p2

∫
d3p3 δ (p1 + p2 + p3)hA1

p1 (η)hA2
p2 (η)hA3

p3 (η)

×
[
pi2 p

j
3 e

A1
ij (p1) eA2

k` (p2) ek`A3 (p3)− 2p`2 pk3 eijA1 (p1) eA2
ik (p2) eA3

j` (k3)
]
. (2.17)

As usual, to take this self-interactions into account, we resort to the interaction picture,
where the states and operators are expressed in terms of the free field operators with the
interaction Hamiltonian HI = H −H0 being used to evolve the states and operators. Here
H and H0 are the full and free Hamiltonians, respectively. In the in-in formalism with
which one computes the expectation value of an operator Q at time t, we have

〈ψH |QH(t)|ψH〉 = 〈ψ|T̄ (ei
∫ t

−∞ dt′HI(t′))Q(t)T (e−i
∫ t

−∞ dt′HI(t′))|ψ〉 , (2.18)

where |ψH〉 (QH) is the state (operator) in the Heisenberg picture and |ψ〉 (Q) is the corre-
sponding free state (operator) , and T (T̄ ) denotes the time-ordering (anti-time-ordering).

In our case, we set H0 to be the one given by L2 and HI = −L3, replace t with the
conformal time η, and consider the 2-point and 3-point functions,

α〈0| γA1
k1

(η) γA2
k2

(η) |0〉α , α〈0| γA1
k1

(η) γA2
k2

(η) γA3
k3

(η) |0〉α . (2.19)

3 Two-point and three-point functions

Following the in-in formalism presented in the previous section, we now compute the two-
point and three-point functions at their leading orders.
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3.1 Two-point function

The two-point function at leading order is simply given by its free field version. It is
straightforward to obtain it by using eqs. (2.10) and (2.12). Focusing on its behavior at
late times (η → 0), we obtain

α〈0| γA1
k1

(η) γA2
k2

(η) |0〉α = δ (k1 + k2) δA1,A2

2 PT (k) , (3.1)

where k = |k1| = |k2|, and PT (k) is the power spectrum given by

PT (k) = 4
k3

(
H

Mpl

)2

(cosh 2α+ cosφ sinh 2α) . (3.2)

The spectrum for the BD vacuum is realized when α = 0. Thus the α-vacuum spectrum is
generally enhanced by a factor e2α for α� 1.

An intriguing fact is that, in the special case of φ = π, the spectrum is exponentially
suppressed like e−2α for α� 1, instead of being enhanced. This implies that the two-point
function can be made arbitrarily small in principle. One might wonder how this could be
consistently realized under the uncertainty principle, or under the Klein-Gordon normal-
ization of the mode functions. The point is that although the α-vacuum mode function vk
is suppressed by e−α at leading order in |kη|, its higher order terms are actually enhanced
by eα. This leads to the enhancement by eα of the component of v′k that contributes
to the Klein-Gordon normalization. In other words, the canonical conjugate of hij , i.e.,
a2h′ij is the one that may be regarded a frozen on superhorizon scales in the large α limit,
e2α|kη| � 1.

Let ηe be the conformal time at the end of inflation, and Nk be the number of e-folds
spent by the mode k until the end of inflation. Then the condition e2α|kηe| � 1 is re-
expressed as α > Nk/2. This inquality may be fairly easily satisfied for small scales for
which Nk is small, and it could even be satisfied for the CMB scale if α is extremely large.
However, in what follows, we assume that α may be large but not too large to make this
happen. Possible effects when this inequality is satisfied on the CMB anisotropy and/or
on cosmological gravitational wave energy density today as well as on the arguments about
classicalization and decoherence on superhorizon scales are worthy of future studies, but
they are out of the scope of the present paper.

3.2 Three-point function

The three-point function to its leading order is given by expanding the in-in formula to the
first order in the interaction Hamiltonian,

α〈0H | γA1
k1

(η) γA2
k2

(η) γA3
k3

(η) |0H〉α

= −i α〈0|
[
γA1
k1

(η) γA2
k2

(η) γA3
k3

(η),
∫ η

−∞
dη1Hint(η1)

]
|0〉α . (3.3)

Using eqs. (2.10) and (2.12) again, we obtain the three-point function in late times
(η → 0) as

α〈0| γA1
k1

(η) γA2
k2

(η) γA3
k3

(η) |0〉α = 1
(2π)3/2 δ (k1 + k2 + k3)B(k1,k2,k3;A1, A2, A3) , (3.4)
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where B is the bispectrum given by

B(k1,k2,k3;A1, A2, A3) =

− 2
(k1k2k3)3

(
H

Mpl

)4 [
P (k1, A1 |k2,k3;A2, A3) k2k3

×
{(

cosh6 α− sinh6 α+ 1
4
(
cosφ sinh 4α+ cos 2φ sinh2 2α

))
×
(
kt −

k1k2 + k2k3 + k3k1
kt

− k1k2k3
k2
t

)
+1

4
(
sinh2 2α cosh2 α+ cos 2φ sinh2 2α sinh2 α+ cosφ sinh 4α cosh2 α

)
×
(
k′t −

k1k2 − k2k3 − k3k1
k′t

+ k1k2k3
(k′t)2

)
+1

4
(
sinh2 2α sinh2 α+ cos 2φ sinh2 2α cosh2 α+ cosφ sinh 4α sinh2 α

)
×
(
k′′t −

−k1k2 + k2k3 − k3k1
k′′t

− k1k2k3
(k′′t )2

)}
+ (k1, k2, k3 : cyclic)

]
, (3.5)

where P is the factor involving the polarization,

P (k1, A1 |k2,k3;A2, A3)

≡
ki2 k

j
3 e

A1
ij (k1) eA2

k` (k2)ek`A3(k3)− 2 k`2 kk3 eijA1(k1) eA2
ik (k2) eA3

j` (k3)
k2k3

, (3.6)

and we have defined kt ≡ k1 + k2 + k3, k′t ≡ k1 + k2 − k3, k′′t ≡ k1 − k2 − k3, and it is
understood that k1 + k2 + k3 = 0 in the above. The vertical bar separating (k1, A1) and
(k2,k3;A2, A3) in the arguments of P is inserted to remark the asymmetry between them.

As discussed in the previous subsection, the two-point function can be exponentially
small for α� 1 if φ = π. Therefore it is of interest to consider the three-point function in
this case. Putting φ = π in the above, we find

B(k1,k2,k3;A1, A2, A3)|φ=0 =

−2
(k1k2k3)3

(
H

Mpl

)4 [
P (k1, A1 |k2,k3;A2, A3) k2k3

×
{

cosh 2α
(
cosh 2α− coshα sinhα

)(
kt −

k1k2 + k2k3 + k3k1
kt

− k1k2k3
k2
t

)
−e
−α

4 sinh 4α coshα
(
k′t −

k1k2 − k2k3 − k3k1
k′t

+ k1k2k3
(k′t)2

)
+e−α

4 sinh 4α sinhα
(
k′′t −

−k1k2 + k2k3 − k3k1
k′′t

− k1k2k3
(k′′t )2

)}

+ (k1, k2, k3 : cyclic)
]
. (3.7)

The above implies that the bispectrum is enhanced by a factor e4α for α � 1. Thus if
the graviton was, or the graviton modes in a certain range of wavenumbers were in an α-
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vacuum like state with α � 1 and φ = π, the bispectrum may be exponentially enhanced
relative to the amplitude of the two-point function. This suggests that the higher point
functions are even more enhanced, and the perturbative expansion ceases to be valid in this
particular case. Whether this is the case or not is an interesting mathematical question,
and it would be intriguing if such a state is actually realized in some scenario of inflation.

To detect the bispectrum in observation, it is customary to consider theoretical tem-
plates for the three limits in the momentum space configuration; the squeezed shape (k1 �
k2 ' k3), the folded shape (k1 = 2k2 = 2k3), and the equilateral shape (k1 = k2 = k3).
They serve as theoretical templates. In the current case, we immediately see that the bis-
pectrum is enhanced for the squeezed and folded shapes. Therefore we focus on these two
limits below. Furthermore, it is customary to introduce the non-Gaussian parameter, say
fNL for each of the three limits. However, as we are not sure if the same form of fNL used
for the scalar type (i.e., curvature perturbation) non-Gaussianity could also be useful for
the tensor type perturbation, because of the different k-dependence, we present it below
just to get a sense of it.

Let us first consider the squeezed limit. Setting k1 � k2 = k3 ≡ k, the leading order
term is found as

B(k1,k2,k3;A1, A2, A3)|k1�k2=k3=k =

−1
k4

1k
2

(
H

Mpl

)4

P (k1, A1 |k2,k3;A2, A3)

×
(
sinh2 2α cosh2 α+ cos 2φ sinh2 2α sinh2 α+ cosφ sinh 4α cosh2 α

)
. (3.8)

Following the standard practice used for the curvature perturbation, we introduce the
non-Gaussian parameter f sq

NL for the squeezed limit defined by [20]

f sq
NL(k1,k2,k3;A1, A2, A3) ≡ B(k1,k2,k3;A1, A2, A3)

PT (k1)PT (k2) + PT (k2)PT (k3) + PT (k3)PT (k1) . (3.9)

Then we obtain

f sq
NL(k1,k2,k3;A1, A2, A3) '
−k

32k1
P (k1, A1 |k2,k3;A2, A3)

×sinh2 2α cosh2 α+ cos 2φ sinh2 2α sinh2 α+ cosφ sinh 4α cosh2 α

(cosh 2α+ cosφ sinh 2α)2 . (3.10)

Thus f sq
NL ∝ k/k1. This implies f sq

NL thus defined is strongly scale-dependent, unlike most
cases of the scalar perturbation. In addition, f sq

NL exponentially enhanced by a factor ∼ e2α

if φ 6= π, while by a factor ∼ e8α if φ = π.
We note that if f sq

NL is to be normalized with respect to the amplitude of the scalar
curvature perturbation spectrum, it should be multiplied by r2 where r = PT (k)/PS(k) is
the tensor-to-scalar ratio. As the difference in the k-dependence between PT (k) and PS(k)
is small, the shape of f sq

NL remains the same by the multiplication of r2 at leading order.
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Next let us turn to the folded limit, k1 = k2 + k3 with k2 = k3 ≡ k. We immediately
see that this limit is quadratic divergent because of the terms proportional to (k′t)−2 and
(k′′t )−2 and their cyclic permutations. To clarify how this divergence would affect actual
observables like the CMB anisotropy is beyond the scope of this paper. Nevertheless, since
the tensor perturbation affects CMB only through its time derivative, we would expect
that the observable effects are non-singular. In any case, let us evaluate the folded limit
by introducing ∆k ≡ 2k − k1. At leading order, we obtain

B(k1,k2,k3;A1, A2, A3)|k2=k3=k,∆k=2k−k1 = (3.11)

1
8k4(∆k)2

(
H

Mpl

)4

×
[
P (k1, A1 |k2,k3;A2, A3)

(
sinh2 2α(sinh2 α+ cos 2φ cosh2 α) + cosφ sinh 4α sinh2 α

)
−2P (k2, A2 |k3,k1;A3, A1)

(
sinh2 2α(cosh2 α+ cos 2φ sinh2 α) + cosφ sinh 4α cosh2α

)]
.

Again, similar to the squeezed limit, by applying the standard convention of f fo
NL used

for the scalar type perturbation, defined by [21]

f fo
NL ≡ B(k1,k2,k3;A1, A2, A3)

(
(PT (k1)PT (k2) + cyc.)

+3(PT (k1)PT (k2)PT (k3))2/3 −
(
(PT (k1)P 2

T (k2)P 3
T (k3))1/3 + perm.

))−1
, (3.12)

we find

f fo
NL '

k2

32(∆k)2
1

(cosh 2α+ cosφ sinh 2α)2 (3.13)

×
[
P (k1, A1 |k2,k3;A2, A3)

(
sinh2 2α(sinh2 α+ cos 2φ cosh2 α) + cosφ sinh 4α sinh2 α

)
−2P (k2, A2 |k3,k1;A3, A1)

(
sinh2 2α(cosh2α+ cos 2φ sinh2α) + cosφ sinh 4α cosh2α

)]
.

Thus, f fo
NL is enhanced not only by a scale-dependent factor k2/(∆k)2 but also exponentially

enhanced for α � 1; by a factor ∼ e2α if φ 6= π and ∼ e8α if φ = π. Also if we are to
normalize f fo

NL by the scalar curvature perturbation spectrum, it should be multiplied by r2.
In summary, both the squeezed and folded limits of non-Gaussianity are strongly scale-

dependent, and are exponentially enhanced for α � 1. The enhancement factor is ∼ e2α

if φ 6= π, and ∼ e8α if φ = π for both limits. This result suggests that the parameter α
may already be strongly constrained by the existing observational data such as the Planck
CMB data [22].

4 Conclusion

In this paper, we computed the graviton bispectrum for the general α-vacuum in de Sitter
space, assuming the conventional cubic self-interactions in general relativity. The α-vacuum
is characterized by a real non-negative parameter α and a phase φ.
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It was argued that the α-vacuum is strongly constrained by the condition that its
backreaction to the energy density of the universe would not jeopardize inflation [18, 19].
This usually leads to the condition that the α-vacuum parameter must be very small,
α � 1, with its wavenumber range very narrow; H < k/a � Mpl. In this paper, we took
a flexible point of view that the constraint could be considerably weakened if the energy
scale of inflation was very low, or the universe was in a pure de Sitter phase where an
α-vacuum might be realized without backreaction.

In the former case, as the graviton energy density from each k mode is estimated as
ρk ∼ (k/a)4e2α inside the horizon, the small backreaction requires e2α � H2M2

pl/M
4
c ,

where Mc is the cutoff energy which should be in the range H � Mc(. Mpl) [19]. These
two inequalities imply eαH/Mpl � H2/M2

c � 1. Let us set Mc/H = eR where we must
have R� 1 in order for our computations to be meaningful. If we consider inflation with
the energy scale ∼ 103GeV, for example, which is perfectly consistent with observational
constraints as well as with the standard model of particle physics, we have H/Mpl ∼ 10−32.
In this case, the above condition implies eα � 1032e−2R, or α � 74 − 2R. This not only
allows a large applicable range of wavenumbers for R� 1 but also gives a weak constraint
on the values of α for R . 30.

We found an intriguing result that the bispectrum may become very large in compari-
son with the spectrum for α� 1, and it becomes particularly enhanced if φ = π. Namely,
even if the tensor spectrum is too small to be detected by observation, there is a possibility
that the bispectrum is large enough to be detected.

We have also computed the bispectrum in the squeezed limit (k1 � k2 ' k3) and the
folded limit (k1 & 2k2 = 2k3) for the general case of α and φ. Introducing the non-Gaussian
parameters f sq

NL and f fo
NL for these two limits, respectively, by copying their definitions in

the case of the scalar bispectrum, we found that both non-Gaussian parameters are scale-
dependent; f sq

NL is proportional to k/k1 where k1 � k ≡ k2 ' k3, and f fo
NL is proportional

to k2/(∆k)2 where ∆k = k1 − k2 − k3 ≡ k1 − 2k. It is of interest to derive observational
constraints on the α-vacuum parameters from, say, the Planck CMB data [22]. But it is
out of the scope of the present paper.

Another, more fundamental issue is the validity of the perturbative expansion. In the
case of α � 1, where the bispectrum is much larger than the spectrum, one may suspect
that the higher order spectra could be even larger. This might be a sign of an unphysical
property of the α-vacuum. Nevertheless, at least from a phenomenological point of view,
we believe that it is scientifically interesting enough to test the graviton α-vacuum non-
Gaussianities computed in this paper against observational data. We hope to come back
to this in future work.
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A Three-point function at arbitrary time

In this appendix, we calculate the Fourier mode three-point function at arbitrary time. By
expanding eq. (2.18) to first order, we have

α〈0| γA1
k1

(η) γA2
k2

(η) γA3
k3

(η) |0〉α = −i
∫ η

−∞
dη̄ α〈0|

[
γA1
k1

(η) γA2
k2

(η) γA3
k3

(η) , Hint (η̄)
]
|0〉α , (A.1)

where Hint = −L3. The right-hand side may be computed by noting that apart from the
polarization dependence, it is proportional to X(k1, k2, k3) where

X(k1, k2, k3) ≡

−i
{
vk1(η)vk2(η)vk3(η)

[∫ η

−∞
dη̄ a2(η̄) v∗k1(η̄)v∗k2(η̄)v∗k3(η̄) + (k1, k2, k3 : cyclic)

]

−v∗k1(η)v∗k2(η)v∗k3(η)
[∫ η

−∞
dη̄ a2(η̄) vk1(η̄)vk2(η̄)vk3(η̄) + (k1, k2, k3 : cyclic)

]}
, (A.2)

where vk is the positive frequency mode function of the α-vacuum. The integrals may be
expressed in terms of those involving the mode functions for the Bunch-Davies vacuum in
eq. (2.10). For example, we have∫ η

−∞
dη̄ a2(η̄)vp1(η̄)vp2(η̄)vp3(η̄) =

cosh3 α

∫ η

−∞
dη̄ a2(η̄)up1(η̄)up2(η̄)up3(η̄) + e3iφ sinh3 α

∫ η

−∞
dη̄ a2(η̄)u∗p1(η̄)u∗p2(η̄)u∗p3(η̄)

+eiφ cosh2 α sinhα
∫ η

−∞
dη̄ a2(η̄)up1(η̄)up2(η̄)u∗p3(η̄)

+e2iφ coshα sinh2 α

∫ η

−∞
dη̄ a2(η̄)up1(η̄)u∗p2(η̄)u∗p3(η̄) , (A.3)

where uk is the Bunch-Davies positive frequency mode function,

uk = H√
2k3

(1 + ikη)e−ikη . (A.4)

To calculate the time integrals, we define

I(p1, p2, p3) ≡
√

8p1p2p3
H

∫ η

−∞
dη̄ a2(η̄)up1(η̄)up2(η̄)up3(η̄) . (A.5)

Then we have

I(p1, p2, p3) =
{( −1

p1p2p3η
+ η

p1 + p2 + p3

)
−i
( 1

(p1 + p2 + p3)2 + p1p2 + p2p3 + p3p1
p1p2p3(p1 + p2 + p3)

)}
e−i(p1+p2+p3)η , (A.6)
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and we find the other integrals are given by∫ η

−∞
dη̄ a2(η̄)up1(η̄)up2(η̄)u∗p3(η̄) = H√

8p1p2p3
I(p1, p2,−p3)∫ η

−∞
dη̄ a2(η̄)up1(η̄)u∗p2(η̄)u∗p3(η̄) = H√

8p1p2p3
I(p1,−p2,−p3)∫ η

−∞
dη̄ a2(η̄)u∗p1(η̄)u∗p2(η̄)u∗p3(η̄) = H√

8p1p2p3
I(−p1,−p2,−p3) .

(A.7)

Using the above results, we obtain

X(k1, k2, k3) =

i
H√

8k1k2k3

{
cosh3 αu∗k1u

∗
k2u
∗
k3 + e−3iφ sinh3 αuk1uk2uk3

+e−iφ cosh2 α sinhαu∗k1u
∗
k2uk3 + e−2iφ coshα sinh2 αu∗k1uk2uk3

}
×
{

cosh3 α I(k1, k2, k3) + e3iφ sinh3 α I(−k1,−k2,−k3) + eiφ cosh2 α sinhα I(k1, k2,−k3)

+e2iφ coshα sinh2 α I(k1,−k2,−k3) + (k1, k2, k3 : cyclic)
}

−i H√
8k1k2k3

{
cosh3 αuk1uk2uk3 + e3iφ sinh3 αu∗k1u

∗
k2u
∗
k3 + eiφ cosh2 α sinhαuk1uk2u

∗
k3

+e2iφ coshα sinh2 αuk1u
∗
k2u
∗
k3 + (k1, k2, k3 : cyclic)

}
×
{

cosh3α I∗(k1, k2, k3) + e3iφ sinh3α I∗(−k1,−k2,−k3) + eiφ cosh2α sinhα I∗(k1, k2,−k3)

+e2iφ coshα sinh2 α I∗(k1,−k2,−k3) + (k1, k2, k3 : cyclic)
}
. (A.8)

If we take the kη → 0 limit, we obtain eq. (3.5).
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