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Abstract. We study the effects of velocity dispersion on the formation of primordial black
holes (PBHs) in a matter-dominated era. The velocity dispersion is generated through the
nonlinear growth of perturbations and has the potential to impede the gravitational collapse
and thereby the formation of PBHs. To make discussions clear, we consider two distinct
length scales. The larger one is where gravitational collapse occurs which could lead to PBH
formation, and the smaller one is where the velocity dispersion develops due to nonlinear
interactions. We estimate the effect of the velocity dispersion on the PBH formation by
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comparing the free-fall timescale and the timescale for a particle to cross the collapsing
region. As a demonstration, we consider a log-normal power spectrum for the initial density
perturbation with the peak value σ2

0 at a scale that corresponds to the larger scale. We find
that the threshold value of the density perturbation δ̃th at the horizon entry for the PBH
formation scales as δ̃th ∝ σ

2/5
0 for σ0 � 1.
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1 Introduction

Black holes are widely accepted to exist in the Universe through various observations such
as the motion of surrounding celestial objects [1–4], gravitational-wave signals from binary-
black-hole mergers [5–7], and the black hole shadow [8]. Some of the black holes might
have a primordial origin [9–11]. Depending on their mass, primordial black holes (PBHs)
may explain dark matter abundance [12–15], the binary black hole abundance observed
by the gravitational-wave events [16–19], an excess of microlensing events [20], a potential
gravitational-wave signal at a pulsar timing array [21–27], the seeds of supermassive black
holes and cosmic structures [28–34]. PBHs whose lifetime is shorter than the age of the
Universe may also play important roles in the early Universe such as baryogenesis [35–37]
and the production of stochastic gravitational-wave background [38–45].1

For any applications of PBHs, their abundance is a basic quantity that determines their
cosmological significance. For the estimation of the abundance in a radiation-dominated (RD)
era, three tools conventionally adopted are: the criterion of PBH formation [56–68], the peaks
theory for the statistical treatment of the initial profiles [69–72], and the critical behavior
of the PBH formation [73–76] for sufficiently spherical collapses. The latest theoretical
estimation of the PBH abundance for the monochromatic curvature power spectrum can be
seen in ref. [77] for Gaussian and local-type non-Gaussian curvature perturbations (see also
refs. [77–81] for effects of the non-Gaussianity), where the PBH mass function is calculated
based on an approximately universal criterion [65] and the peaks theory [72].

1The stochastic background of the gravitational waves induced by the primordial curvature perturbations is
also associated with PBHs with longer lifetimes and they are interesting observational targets. See refs. [46–53]
and recent reviews [54, 55].
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In a matter-dominated (MD) era, since the pressure of the fluid, which is the most
effective factor to impede PBH formation in an RD era, is absent and the criterion of PBH
formation obtained with the fluid approximation does not apply. The absence of the pressure
would make the gravitational collapse easier, and lower peaks of the density perturbation
may contribute to PBH abundance [82, 83]. However, the high-peak approximation in peaks
theory becomes worse and the spherical symmetry assumption, which is relevant to rare
high peaks [69], may not be accurate. Furthermore, it is well known that the deviation from
the spherical symmetry can significantly grow in the gravitational collapse in the case of
pressureless matter [84, 85]. Thus, non-spherical initial profiles are inevitable, and they may
lead to the complicated nonlinear dynamics associated with deformation and rotation. In
addition, the pressureless fluid approximation breaks down as soon as nonlinearity becomes
important due to the occurrence of shell-crossing singularities. In reality, the pressureless
matter obeys the collisionless Boltzmann equation, and velocity dispersion will develop in
the nonlinear regime. Thus, careful studies that take account of various effects are required
in order to understand the PBH formation in an MD era. There are several analytical
studies in the literature, in which the effects of asphericity [86], angular momentum [87], and
inhomogeneity [82, 83, 88], were estimated under some assumptions and approximations. For
an analysis in numerical relativity, see ref. [89].

In this paper, we consider the effect of the velocity dispersion inside the collapsing
region and discuss the conditions for the velocity dispersion to impede the PBH formation in
the MD era.2 To make discussions simple and clear, we consider two distinct length scales.
The larger one is where gravitational collapse occurs which could lead to PBH formation,
and the smaller one is where the velocity dispersion develops due to nonlinear interactions.
The paper is organized as follows. In section 2, we overview the situation we consider by
describing our setup and assumptions. In section 3, we derive the conditions for the velocity
dispersion to impede the PBH formation. In doing so, we find there are essentially two different
scenarios, depending on when the velocity dispersion emerges, details of which are discussed
in appendix A. In section 4, the conditions to impede the PBH formation are rephrased in
terms of the density threshold for the PBH formation for a given density power spectrum.
In section 5, using the obtained results, we compute the PBH production probability as a
function of the peak amplitude of the power spectrum of the density perturbation. Our
conclusions are given in section 6. Throughout this paper, we use the units in which both the
speed of light and Newton’s gravitational constant are unity, G = c = 1.

2 Overview

To avoid any confusion in understanding how the velocity dispersion is generated and works
as a preventing factor against PBH formation, before discussing the details, let us clarify our
setup and assumptions.

First, the rough basic picture is as follows. We consider a high-density region of the
comoving scale kPBH that undergoes gravitational collapse and may lead to PBH formation,
which may be impeded by the velocity dispersion generated by the dynamics on a scale k
where k > kPBH. Here we suppose that a finite power of perturbation also exists on these
small scales. When the perturbations on the small scales enter the nonlinear regime, that
is, when the density perturbation becomes high enough to render the fluid approximation

2The effect of the velocity dispersion was briefly mentioned in ref. [90], in which the radius of the virialized
structure was compared to the Schwarzschild radius. We introduce a more comprehensive discussion.
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invalid, the velocity dispersion is assumed to be generated, so that the random motion of the
constituent particles can act against gravity. In this phase, if the repulsive effect due to this
generated random motion dominates the dynamics of the whole system over the length scale
1/kPBH, the collapsing region will be eventually virialized, so that the PBH formation will be
impeded. Here, we note that the velocity dispersion may get effective on the scale kPBH not
immediately after it is generated on the scale k but later, depending on its magnitude. We
describe more specific scenarios in the following setup and assumptions.

Now let us describe the setup and assumptions.

• We consider only the two separated comoving scales characterized by k and kPBH. We
call kPBH the large or PBH scale, while k the small scale. Throughout this paper, the
tilded quantities are those for the PBH scale kPBH, while those for the small scale k are
not tilded. Thus in particular k̃ ≡ kPBH. Two exceptions are the velocity dispersion σv(t)
as a function of time, and the root-mean-square amplitude of the density perturbation
at the horizon entry σδ,ent(k) as a function of the comoving wavenumber.

• Since we discuss a cosmological patch that is going to form a PBH (or to be impeded
by the velocity dispersion), the density perturbation on this patch δ̃ent is exceptionally
higher than the typical amplitude, δ̃ent � σδ,ent(k̃), at the time the scale enters the
Hubble horizon.

• On the other hand, we suppose the amplitude of the smaller-scale perturbations is given
by a typical value, that is, the amplitude at the horizon entry δent(k) is typically given
by the standard deviation of the density perturbation, |δent(k)| = O(σδ,ent(k)). This
magnitude is also assumed to be so small that the PBH formation on the small scale is
negligible. Then, except for section 5, we assume for simplicity that the only impeding
factor against PBH formation on the scale k̃ is the velocity dispersion. In addition to
the velocity dispersion, other potential impeding factors against the PBH formation
will be briefly discussed in section 5.

• We assume that the fluid approximation (i.e., coherent flow of particles with negligible
velocity dispersion) is valid on the scale k until caustics appear, that is, until the
perturbation enters the nonlinear regime (provided that larger scales have not yet
collapsed). The collapsing over-dense regions may be locally described by the closed
Friedmann-Lemaître-Robertson-Walker (FLRW) universe models (see, e.g., ref. [91]).
Then the collapsing time on the PBH scale k̃ and that on the scale k may be estimated by
using the closed FLRW collapsing model, which we denote by t̃coll and tcoll, respectively.
It should be noted that, if tcoll & t̃coll, the smaller-scale perturbations cannot be
independent of the surrounding over-density associated with the PBH scale. Namely,
the actual collapsing time will be earlier than tcoll in that case.

It should be noted that the velocity dispersion generated on the scale k may not be
immediately shared with the whole region on the scale k̃. If the virialization is completed on
the smaller scale before the collapse of the larger scale, the matter is confined in the virialized
halos. In this case, the halos behave as macroscopic self-gravitating comoving particles, hence
no impeding effect due to the velocity dispersion is expected against the gravitational collapse
on the scale kPBH. Therefore, we consider the two possible scenarios: Case I and Case II
as follows.

– 3 –
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• Case I: we assume the virialization of the perturbations on the smaller scale is completed
before the collapse of the larger scale, i.e., tvir < t̃coll. In this case, the velocity dispersion
is released when the mean density on the scale k̃ becomes comparable to the density
of a halo.3 At this point, the halos dissolve into ambient space. We identify the time
when the halos dissolve with the time (≡ t∗) at which the velocity dispersion becomes
effective on the PBH scale k̃.

• Case II: we assume tvir > t̃coll, i.e., there is no time for the small scale to collapse and
form virialized halos. In this case, the velocity dispersion is directly released soon after
the smaller-scale perturbations grow into the nonlinear regime. Since the evolution of
the small-scale perturbations should be necessarily promoted (especially in case II) by
the evolution of the surrounding high-density region on the scale 1/k̃, we will consider
the linear density perturbation δcom in a FLRW universe in the synchronous comoving
gauge for the evolution of the small-scale perturbations. Then, the time t∗ when the
velocity dispersion becomes effective on the scale k̃ is identified with the time when
δcom ∼ 1, i.e., when caustics appear.

The detailed derivation of the criterion that distinguishes the two cases is given in
appendix. Here let us briefly present an order-of-magnitude estimate. Consider a region
where a positive density perturbation δ̃ exists. In a linear regime, it grows in proportion to
the scale factor a at a matter-dominated stage, where a ∝ t2/3. Thus δ̃(t) = (t/t̃ent)2/3δ̃ent,
where δ̃ent is the amplitude of the density perturbation at horizon entry. The time at which
the region collapses is sometime after the amplitude reached O(1). Ignoring order-of-unity
numerical factors, we may identify the time when δ̃ = 1 as the collapse time, t̃col. When
the region collapses but doesn’t lead to the formation of a black hole, the system virializes
approximately at the same time, t̃vir ∼ t̃col. Since the same argument applies to the small
scale, the region of the small scale will be virialized, as δent is assumed to be very small. Thus
we have

tvir ∼ tentδ
−3/2
ent . (2.1)

On the other hand, on the PBH scale k̃, the region may form a black hole if there is no
impeding factors. Hence, we estimate the collapse time as

t̃col ∼ t̃entδ̃
−3/2
ent . (2.2)

Now recalling that the comoving scale k may be expressed in terms of its horizon entry time
as k = (aH)ent ∝ t−1/3

ent , one finds(
tvir
t̃col

)2/3
∼
(
tent
t̃ent

)2/3 δ̃ent
δent

= k̃2

k2
δ̃ent
δent

. (2.3)

Thus the criterion is

Case I : tvir < t̃coll ⇔ k2δent > k̃2δ̃ent ,

Case II : tvir > t̃coll ⇔ k2δent < k̃2δ̃ent . (2.4)

In both cases, once the velocity dispersion is shared over the whole patch of the PBH
scale at t = t∗, the criterion for the PBH formation can be roughly evaluated by comparing

3Note that the mean density first decreases as the Universe expands, but eventually increases as the region
on the scale k̃ contracts. The release of the velocity dispersion happens while the mean density is increasing.
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the gravitational free-fall time ∆t̃ff ∝ ρ̃−1/2 ∝ R̃3/2 with the sound-wave crossing time
∆t̃cross ∼ R̃/σv, where ρ̃, R̃, and σv are the density, the physical size of the scale k̃, and
the velocity dispersion, respectively. As the velocity dispersion increases, the crossing time
becomes shorter, and the PBH formation is eventually impeded. The evaluation of the PBH
formation condition is given in section 3.

In section 4, assuming that the scale k can be treated independently of the scale k̃,
we consider a log-normal density spectrum ln σ(k) = ln σ0 − µ ln(k/k̃)2, where σ0 and µ are
dimensionless parameters, and evaluate the threshold amplitude of the density perturbation
at horizon entry δ̃ent. In section 5, the PBH production rate is roughly evaluated following
the procedure provided in ref. [87], and the effect of the velocity dispersion is compared with
the spin effects reported in ref. [87].

3 Effect of the velocity dispersion against collapse

The velocity dispersion may impede the gravitational collapse after the velocity dispersion is
shared in the whole region of the PBH scale k̃. First, let us evaluate the impeding effect of
the uniformly distributed velocity dispersion. We consider a spherical ball on the PBH scale.
Once the velocity dispersion is shared over the collapsing ball, the velocity dispersion simply
increases as σv ∝ ρ̃1/3 as the system collapses adiabatically, according to Liouville’s theorem.
More explicitly, we have

σv(t) = σv(t∗)
(
ρ̃(t)
ρ̃(t∗)

)1/3
= σv(t∗)

R̃(t∗)
R̃(t)

, (3.1)

where t∗ < t and t∗ is the time when the velocity dispersion is shared over the whole collapsing
region.

The sound-wave crossing time across the region of the size R(t) is estimated as

∆t̃cross '
R̃(t)
σv(t)

= 3
2σv(t∗)

R̃(t)2

R̃(t∗)R̃ent
t̃ent, (3.2)

where R̃ent is the radius at the horizon entry time t̃ent satisfying R̃ent = 1/H̃ent = 3t̃ent/2 in
the Einstein-de Sitter background with H̃ent being the Hubble parameter at the horizon entry.
On the other hand, the free-fall time is estimated as

∆t̃ff '
(
R̃(t)
R̃ent

)3/2

t̃ent. (3.3)

Noting that ∆t̃cross ∝ R̃2 and ∆t̃ff ∝ R̃3/2, and ∆t̃cross > ∆t̃ff at the time of horizon entry,
the collapse halts when ∆t̃ff = ∆t̃cross if the radius is larger than the Schwarzschild radius at
that time. Let us denote the value of R̃(t) at ∆t̃ff(t) = ∆t̃cross(t) by R̃halt. We find

R̃halt = 4
9σ

2
v(t∗)

R̃2(t∗)
R̃2

ent
R̃ent . (3.4)

If this is larger than 2M̃ , i.e., R̃halt > R̃ent = 1/H̃ent = 2M̃ , the collapse halts before the
PBH formation. Conversely, a PBH forms if R̃halt < 2M̃ . Thus, the condition for the PBH
non-formation can be rewritten in the following simple form.

σv(t∗)R̃(t∗) >
3
2R̃ent. (3.5)

– 5 –
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To understand how the velocity dispersion is shared over the whole region of the size
1/k̃, we introduce a closed FLRW collapsing model and consider its perturbations as given
in appendix A. Deferring detailed explanations of the complicated manipulations, here we
just refer to the results. According to the discussion in appendix A, depending on whether
the halo formation on the scale k can be completed before the collapse of the scale k̃, we can
rewrite eq. (3.5), i.e., PBH non-formation condition, as

δent <
k̃4

k4 for Case I : k2δent > k̃2δ̃ent , (3.6)

δent >
k

k̃
δ̃

5/2
ent for Case II : k2δent < k̃2δ̃ent , (3.7)

where we have ignored factors of order unity. The qualitative features of the above conditions
can be understood as follows.

For Case I, the virialization of the scale k occurs before the collapse of the would-be
PBH scale. The condition (3.6) is a bit counter-intuitive, so let us see why it is the case.
Since the gravitational potential Ψ is constant in time in the matter-dominated universe,
and δent ∼ Ψ at horizon crossing, the virial velocity dispersion is estimated as σ2

v ∼ Ψ ∼ δent
(see eq. (A.15)). The virial density is ρvir = ρent(aent/avir)3 = ρent(δent/δvir)3 ∼ ρentδ

3
ent since

δ ∝ a and δvir = O(1). As the collapse of a ball of the scale k̃ proceeds, the density ρ̃ reaches
ρvir at t = t∗, and the velocity dispersion is released to the entire ball, i.e., ρ̃(t∗) = ρvir. Hence
we obtain the relation,

δent ∼
(
ρvir
ρent

)1/3
=
(
ρvir
ρ̃ent

)1/3 ( ρ̃ent
ρent

)1/3
=
(
ρ̃(t∗)
ρ̃ent

)1/3 (aent
ãent

)
= R̃ent

R̃(t∗)
k̃2

k2 . (3.8)

Recalling that δent ∼ σ2
v (eq. (A.15)), this implies

σ2
v

R̃(t∗)2

R̃2
ent
∼ δent ×

k̃4

k4
1
δ2

ent
= k̃4

k4
1
δent

. (3.9)

With eq. (3.5), this gives the condition quoted in eq. (3.6). Here we have ignored all the
coefficients of O(1). As one can see from the above estimate, the reason why the condition
gives an upper bound on δent is because it would make the small-scale virialized halos so
small and dense that the large-scale region would collapse to a black hole before the velocity
dispersion is shared over the entire region of the PBH scale k̃. More details are given in
appendix A.3.

Let us now turn to Case II where the velocity dispersion is shared by the whole PBH
region before the perturbations on the small scale k are virialized. The analysis in this case
is a bit more complicated as one has to consider the growth of the small-scale perturbation
in the collapsing region of the scale k̃. The detailed derivation of the condition (3.7) is
defered to appendix A.4. Here we only mention that the reason why it depends on δ̃ent is
precisely because of this fact that the small-scale perturbation grows within the collapsing
ball of the large scale. The reason why the condition gives a lower bound on δent is simply
because a larger δent gives a larger velocity dispersion, and hence it is easier to impede the
PBH formation.

– 6 –
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4 Threshold of the density perturbation

As the effect of the perturbation on the small scale k is statistical, hereafter, we replace δent
by its root-mean-square value σδ,ent(k). Then, the condition for impeding the PBH formation
due to velocity dispersion can be summarized as follows:

σδ,ent(k) <
(
k

k̃

)−4
for Case I : σδ,ent(k) > δ̃ent

(
k

k̃

)−2
, (4.1)

σδ,ent(k) > δ̃
5/2
ent

(
k

k̃

)
for Case II : σδ,ent(k) < δ̃ent

(
k

k̃

)−2
, (4.2)

where we remind the reader that the tilded quantities are those associated with the PBH
scale. Thus, only the range k > k̃ is meaningful.

Before proceeding to the threshold analysis, we mention a possible caveat about when
one considers a continuous perturbation spectrum. Although we consider the case k → k̃
in our analysis, since we treat the two scales k and k̃ as separate and independent scales,
the validity of our argument becomes questionable in the limit k → k̃. To be more precise,
since we consider the effect of the small-scale perturbation on the dynamics of the PBH scale
only through the velocity dispersion, which is a statistical quantity by definition, k must be
sufficiently larger than k̃ to allow statistical interpretations of the small-scale velocity effect.
Therefore, to avoid complications, we introduce the minimum applicable value for k, k ≥ kmin
where kmin > k̃. Although we never assign an explicit value to kmin, we expect kmin/k̃ = O(10).
We also mention that the introduction of kmin renders the condition derived below a sufficient
condition for PBH non-formation or a necessary condition for PBH formation. This should
be kept in mind below.

With this minimum value kmin for k in mind, we schematically depict the region of
PBH non-formation in figure 1, where light- and dark-shaded regions correspond to Case I
and Case II, respectively. Once the density power spectrum σ2

δ,ent(k) is given as a function
of k, and if the line describing the density power spectrum passes across the shaded region
in figure 1, there exist small-scale perturbations that prevent a density perturbation of an
amplitude δ̃ent on the scale k̃ to form a PBH. An important point in this diagram is the
place where the lines representing the two conditions in (4.1) and (4.2) merge. It occurs at
(k, σδ,ent) = (δ̃−1/2

ent k̃, δ̃2
ent).

Let us apply the above result to a couple of simple examples. When we consider the PBH
formation, it is often assumed that there is a narrow peak in the power spectrum and abundant
PBHs are produced on scales around the peak. In particular, as a comoving wavenumber k and
its horizon crossing time t during inflation is related as k ∼ eHt, a log-normal distribution is
naturally realized in many models of inflation. Then, around the peak of the power spectrum,
the power spectrum may be well approximated by a log-normal spectrum:

σ2
δ,ent(k) = σ2

0 exp
{
−2µ

[
ln
(
k

k̃

)]2}
, (4.3)

or equivalently,

ln σδ,ent(k) = −µ
[
ln
(
k

k̃

)]2
+ ln σ0, (4.4)

where µ is the non-dimensional parameter characterizing the width of the log-normal
distribution.

– 7 –
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0

0
Figure 1. The parameter space of PBH non-formation in the (k, σδ,ent) plane. The shaded regions
(Case I: light shaded, Case II: dark shaded) show the parameter region of PBH non-formation. The
colored lines represent examples of density perturbation spectra peaked at the PBH scale. From top
to bottom, the velocity dispersion does not impede the PBH formation (top red), does do so (bottom
red and top blue), and does not do so (bottom blue).

First, let us consider the case when σδ,ent(kmin) < (kmin/k̃)−4 (blue lines in figure 1),
namely,

ln σ0 < ln σcr(µ, kmin) ≡ µ
[
ln
(
kmin

k̃

)]2
− 4 ln

(
kmin

k̃

)
. (4.5)

In this case, since the spectrum must lie below the shaded region in figure 1 to form PBHs,
we obtain the following inequality as the PBH formation condition (see the first panel in
figure 2):

ln
(
kmin

k̃

)
+ 5

2 ln δ̃ent > ln σδ,ent(kmin)

⇔ δ̃ent > exp
[
−2

5µ
[
ln
(
kmin

k̃

)]2](
σ0

k̃

kmin

)2/5

. (4.6)

In the case σδ,ent(kmin) > (kmin/k̃)−4 (red lines in figure 1), namely,

ln σ0 > ln σcr(µ, kmin), (4.7)

the spectrum must lie above the shaded region to form PBHs. This condition is satisfied if
the point (k, σδ,ent) = (δ̃−1/2

ent k̃, δ̃2
ent) is below the spectral curve. This leads to the condition,

2 ln δ̃ent < ln σδ,ent
(
k = δ̃

−1/2
ent k̃

)
= −µ

(
ln δ̃−1/2

ent

)2
+ ln σ0 . (4.8)
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Figure 2. The region for PBH non-formation and the spectral line (red curve) for ln σ0 = −5 (top
panel) and ln σ0 = −2.5 (bottom panel) with ln(kmin/k̃) = 1, µ = 1 are shown. The top (bottom) panel
shows the case for σ0 < σcr(µ, kmin) (σ0 > σcr(µ, kmin)), which corresponds to the blue (red) curves in
figure 1. For δ̃ent < δ̃th with δ̃th being defined in eq. (4.10), the lines for ln σδ,ent = ln δ̃ent − 2 ln(k/k̃)
and ln σδ,ent = 5/2 ln δ̃ent + ln(k/k̃) are shown by the blue and orange dashed lines, respectively. The
green-shaded region is the region for PBH non-formation. Since the spectral line (red curve) passes
through the green-shaded region, in this case, there exist small-scale perturbations that prevent the
PBH formation on the scale k̃. If δ̃ent is increased to the threshold value, i.e., δ̃ent = δ̃th, the blue and
orange dashed lines get shifted up to the corresponding solid lines, so that the shaded triangle region
of non-formation becomes narrower to the hatched triangle and touches the spectral line at a vertex.

Noting that δ̃ent < 1, we find that the inequality (4.8) implies the condition (see the second
panel in figure 2),

δ̃ent > exp
[
− 2
µ

(
2 +

√
4 + µ ln σ0

)]
. (4.9)

To summarize, the necessary condition for the PBH formation, (4.6) and (4.9), is

δ̃ent > δ̃th(σ0, µ, kmin) ≡


exp

[
−2

5µ ln2
(
kmin/k̃

)] (
σ0(k̃/kmin)

)2/5
; σ0 < σcr(µ, kmin),

exp
[
− 2
µ

(
2 +
√

4 + µ ln σ0
)]

; σ0 > σcr(µ, kmin).
(4.10)
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Figure 3. The density threshold δ̃th(σ0, µ, kmin) for PBH formation as a function of σ0 for
(µ, ln(kmin/k̃)) = (1, 0), (1, 1), (1, 2), (1/2, 1) and (2, 1).

We note that, as is explicitly shown in figure 3, δ̃th is discontinuous at σ0 = σcr(µ, kmin) as a
function of σ0 if

d ln σδ,ent(k)
d ln k

∣∣∣∣
k=kmin

> −4 ⇔ µ ln
(
kmin

k̃

)
< 2 . (4.11)

Some comments on the presence of the discontinuity in δ̃th are in order. If the root-
mean-square value of perturbations on the small scale σδ,ent(k) is large enough, the resulting
virialized halos in a PBH scale region become so compact that they behave like particles at
rest and never impede the PBH formation. On the other hand, if σδ,ent(k) is very small, the
velocity dispersion becomes too small to affect the PBH formation. Thus the presence of the
discontinuity reflects the fact that the velocity dispersion becomes an effective impeding factor
only for a finite range of σδ,ent(k). This results in the two types of spectra that may lead to
the PBH formation, as shown by the top red and the bottom blue curves in figure 1. The
transition from one type to the other corresponds to the discontinuity. On general grounds,
however, one may expect that such a discontinuity would be smoothened when we improve
the analyses. For example, we required ∆t̃cross < ∆t̃ff for the non-formation of PBHs, but
the fate of would-be PBH over-dense regions may be probabilistic when ∆t̃cross ' ∆t̃ff. In
addition, once we take into account the other impeding factors which we ignored in this
paper, namely, asphericity [86], angular momentum [87], and inhomogeneity [82, 83, 88], the
discontinuity will not play any role in determining the PBH formation threshold for most of
the parameter space of our interest (compare figures 3 and 4).

For cosmological applications, one may expect that the width of the peak µ of the
log-normal spectrum (4.4) would be of order unity, whereas the peak height σ0 would not
be very close to unity since otherwise PBHs would be overproduced. Thus we expect that
σ0 < σcr and the threshold in the first line of eq. (4.10), δ̃th ∝ σ

2/5
0 , or the condition from

Case II, is likely to be relevant in such cases. We mention that if the peak is very sharp
so that the width of the spectrum is much less than kmin, namely, µ ln2(kmin/k̃) � 1, the
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velocity dispersion becomes completely ineffective. In such a case, the other impeding factors
we mentioned above will play a decisive role.

5 PBH formation probability

In this section, we consider the PBH formation probability by taking into account not only
the effect of velocity dispersion but also all the other impeding factors discussed previously
in the literature. First, let us recall the effect of angular momentum discussed in ref. [87].
The threshold values due to the angular momentum estimated at first- and second-order
perturbations are given in eq. (4.12) in ref. [87] as

δ̃th(1) = 3 · 22

53 q2, (5.1)

δ̃th(2) =
(2

5Iσ0

)2/3
, (5.2)

where q and I are parameters of order unity describing the initial reduced quadrupole moment
and the second-order tidal contribution to the angular momentum, respectively, and σ0 is the
standard deviation of the density perturbation at the PBH scale. Assuming q is independent
of σ0, the different dependence of the two thresholds on σ0 leads to different shapes of the
PBH production probabilities as shown in figure 4.

Second, let us turn to the effect of anisotropy. According to ref. [86], in an MD era,
taking the anisotropy of the system into account, the PBH production probability β0 is
estimated as

β0 '
∫ ∞

0
dα
∫ α

−∞
dβ
∫ β

−∞
dγΘ

(
δ̃(α, β, γ)− δ̃th

)
Θ(1− h(α, β, γ))w(α, β, γ), (5.3)

where α, β, and γ are the variables representing the anisotropy, Θ(·) is the Heaviside step
function, δ̃(α, β, γ) = α+β+γ is the density perturbation in terms of the anisotropy parameters,
h(α, β, γ) is a function that determines the threshold based on the hoop conjecture [92],
and w(α, β, γ) ∝ exp

[
−3
(
2(α2 + β2 + γ2)− (αβ + βγ + γα)

)
/(2σ2

0)
]
is the Doroshkevich

probability distribution function [93]. The result is that β0 ∝ σ5
0 with δ̃th = 0. See refs. [86, 87]

for more details.
Finally, let us consider the effect of inhomogeneities discussed in [88]. Their result

indicates that β0 ∝ σ3/2 if only the effect of inhomogeneities is taken into account. If we
assume this impeding effect to work independently of the effect of anisotropy, we would obtain
β0 ∝ σ5 × σ3/2 = σ13/2. However, as noted in [88], the threshold obtained there is a sufficient
condition for the PBH formation. In other words, it is not a necessary condition for PBH
formation. Therefore, to be conservative, we do not take its effect into account in this paper.

In figure 4, we plot β0 with δ̃th determined by the consideration of the velocity dispersion
using eq. (4.10). For comparison, we also plot β0 with δ̃th determined by the consideration of
the spin effects [87] using eqs. (5.1) and (5.2). The common slope can be approximated as
β0 ' 0.05556σ5

0 [86] (green dashed line). This is the effect of anisotropy. Different criteria
on the density threshold result in different exponential falloffs. They can be understood by
Carr’s formula [94], according to which the PBH formation probability is roughly proportional
to exp[−δ̃2

th/(2σ2
0)]. Applying this to our result (4.10) in the case σ0 < σcr, δ̃2

th ∝ σ
4/5
0 , the

exponent is found to be proportional to σ−6/5
0 , as shown by the solid curves in figure 4. On the
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Figure 4. The dependence of the PBH production probability β0 on the standard deviation σ0 of
the density perturbations at the PBH scale. The solid curves are our results including the effects of
velocity dispersion for (µ, ln(kmin/k̃)) = (1, 0) (top panel; purple), (1, 1) (both panels; blue), (1, 2) (top
panel; magenta), (1/2, 1) (bottom panel; purple), and (2, 1) (bottom panel; magenta). The vertical
solid lines indicate the corresponding values of σcr. For comparison, the first-order and second-order
results in ref. [87] are plotted as the orange (right) and dark yellow (left) dashed lines, respectively.
For these, parameters are chosen as I = 1 and q =

√
2 [87]. The common slope β0 ' 0.05556σ5

0
represented by the green dashed line is the effect of anisotropy [86]. For comparison, the prediction of
Carr’s formula Erfc[δ̃th/(

√
2σ0)]/2 for the PBH production in the RD era is also shown by the dashed

gray line with δ̃th = 0.42.

other hand, the exponents are proportional to σ−2
0 and σ−2/3

0 , respectively, for the first-order
and second-order spin effects, respectively, as shown by the orange dashed (first-order) and
dark yellow dashed (second-order) curves.

From figure 4, we see that the effect of the velocity dispersion can be the dominant factor
against the PBH formation. Although the value of σ0 where the probability exponentially
drops significantly depends on kmin, if the first-order spin effect is small, which is the case if
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q � 1, or if kmin ' k̃, the effect of the velocity dispersion is most significant. Here it should
be noted that, in reality, all the impeding factors should be taken into account at the same
time although we treated the effects of the spin and the velocity dispersion independently in
this paper.4

6 Conclusions

In this paper, we discussed the effect of velocity dispersion on PBH formation. For this
purpose, we considered two distinct scales: one is a large scale that would form a PBH, called
the PBH scale, if there were no impeeding factors. The other is a small scale on which the
velocity dispersion is generated. Then we derived the condition for the velocity dispersion
on the small scale to impede the PBH formation. Once the velocity dispersion is shared in
the whole collapsing region, the diffusion associated with the velocity dispersion competes
with the gravitational contraction. We obtained the simple criterion σv∗R̃∗ < 3M̃ for the
formation of a black hole of mass M̃ in terms of the size R̃∗ and the velocity dispersion σv∗ at
the time when the velocity dispersion is shared in the whole region (see eq. (3.5)). To apply
this formula to the PBH formation, we considered two scenarios of the process.

If the density perturbation on the small scale is sufficiently large, the virialization takes
place before the collapsing time of the PBH scale. Then, the velocity dispersion in the
virialized halos is released to the whole would-be PBH region when the mean density of that
region becomes comparable to the virial density of halos, and it may impede PBH formation.
However, if the density perturbation on the small scale is extremely large, the virialized halos
become too compact and dense, and the dissolution of halos takes place too late to impede
the PBH formation. Thus we obtain an upper bound for the amplitude of the small-scale
density perturbation below which the PBH formation is impeded.

On the other hand, if the density perturbation on the small scale is extremely small, the
virialization can never be achieved before a PBH is formed. However, even in this case, if
the small-scale density perturbation is not too small, it grows and may eventually enter the
nonlinear regime. This growth of the small-scale perturbation is enhanced by the fact that it
behaves like a perturbation in a closed collapsing background universe which the would-be
PBH region mimics. Then assuming that the velocity dispersion is generated and shared
over the PBH scale when the amplitude of the small-scale density perturbation exceeds unity,
the PBH formation may be impeded. Thus, this scenario renders the perturbation with a
somewhat smaller amplitude to impede the PBH formation.

The two conditions are summarized in the inequalities (4.1) and (4.2). These conditions
can, in principle, apply to any functional form of the density power spectrum. Based on this
result, we computed the PBH production rate, assuming that the power spectrum is of a
log-normal form, with the peak at the PBH scale. The result is shown in figure 4, where
comparisons with the other impeding factors, namely anisotropy and angular momentum, are
also made. We find that the effect of velocity dispersion can be a dominant factor to prevent
PBH formation, although all these effects are subjected to various uncertainties, in addition
to the spectral shape dependence, that affects the threshold value of the density perturbation
amplitude. It should be also noted that, if the spectrum has a sufficiently sharp peak around
the PBH scale, the velocity dispersion is likely to be ineffective. When we translate the
observational constraints on the PBH abundance into those on model parameters in PBH

4From figure 4, we find that the abundance produced in the RD era epoch can be larger than the one in
the MD at least for σ0 & O(0.1).
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formation scenarios, since the effect of the velocity dispersion may act as an additional factor
to prevent PBH formation, the allowed regions for the model parameters will get wider (see
figures 10 and 11 in ref. [13] for the observational constraints on the PBH abundance).

One of the future directions is to properly include the effect of deviations from the
idealized dust picture during the collapse. Besides the apparent fact that the collapsing matter
is not dust but collisionless cold particles in the simplest situation, which naturally gives rise
to the dispersion in the momentum space as well as in the real space, if it interacts with each
other or with other fields non-gravitationally, an additional pressure arises during virialization.
If the matter is a massive scalar field, the quantum pressure due to the uncertainty principle
may play an essential role. Recently, the PBH formation right after inflation when the inflaton
is oscillating, which is effectively an MD era, has been discussed in refs. [90, 95–101]. It will
be interesting to extend our general relativistic formalisms to these setups.
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A Generation of velocity dispersion

A.1 Closed FLRW collapsing model
To describe the evolution of over-dense regions, we introduce closed FLRW universes as
models for the over-dense regions. We assume that the closed FLRW model can be applied
to all over-dense regions on any scale, that is, they can apply to both scales of k̃ and k.
Therefore, the equations given in this section can be applied to the scale k̃ replacing all the
bare quantities (aent, Ωent, tent, tcoll, Hent, δent, Rent, E, K and M) by the corresponding
tilded quantities (ãent, Ω̃ent, t̃ent, t̃coll, H̃ent, δ̃ent, R̃ent, Ẽ, K̃ and M̃).

The Friedmann equation for a closed universe can be written in the following form:(
ȧ

a

)2
= H2

ent

[
Ωent

(
aent
a

)3
+ (1− Ωent)

(
aent
a

)2
]
, (A.1)

where a, Hent and Ωent are the scale factor, Hubble parameter, and cosmological density
parameter at the horizon entry t = tent = 2/(3Hent), respectively. Note that, at this stage,
the horizon entry time is just the time for reference because we have not introduced the scale
of the over-dense region. The spatial curvature K is given by

K := (Ωent − 1)H2
enta

2
ent. (A.2)

The parametric solution for the scale factor a is
a

aent
= Ωent

2(Ωent − 1)(1− cos θ), (A.3)

t = Ωent
2Hent(Ωent − 1)3/2 (θ − sin θ), (A.4)

where the parameter θ is related to the conformal time η by θ =
√
Kη.
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Taking the Einstein-de Sitter (EdS) universe as the background universe and considering
the uniform Hubble slice, we can obtain the value of the density perturbation at the horizon
entry as

δent = Ωent − 1, (A.5)

where we have used the fact that the background density is given by the critical density
3H2/(8π) for the uniform Hubble slice. Hereafter we assume δent � 1, which can be satisfied
even for a rarely high-density region leading to PBH formation in an MD era.

For θ =
√
Kη � 1, we find a ∝ t2/3 at the leading order, and the over-dense region can

be approximated by an EdS universe. More specifically, we find

a

aent
= Ωent

4(Ωent − 1)Kη
2 + 1

Ωent − 1O
[
(Kη2)2

]
, (A.6)

t = Ωentaentη

12(Ωent − 1)Kη
2 + aentη

Ωent − 1O
[
(Kη2)2

]
. (A.7)

Since the value of η at the horizon entry is given by ηent ∼ 1/(Hentaent) ∼ δent/
√
K, we find

η < ηent � 1/
√
K before the horizon entry, and then the EdS approximation is valid before

the horizon entry. The time at the maximum expansion (θ = π), tmax, and the collapsing
time (θ = 2π), tcoll, are given by

tcoll = 2tmax = πΩent
Hent(Ωent − 1)3/2 '

π

Hentδ
3/2
ent

. (A.8)

At the maximum expansion, the radius of the over-dense region, Rmax, becomes

Rmax '
1

Hentδent
= Rent

δent
. (A.9)

At this moment, the energy of the over-dense region can be parametrized as

E = −h M2

Rmax
(A.10)

withM = 1/(2Hent) being the horizon mass at the horizon entry and h is anO(1) dimensionless
parameter. For a uniform ball, h = 3/5.

A.2 Virialization

After the collapse, if a black hole does not form, the collapsed region is expected to be
virialized in a time scale comparable to the collapsing time,

tvir = stcoll, (A.11)

with s = O(1) > 1 being another dimensionless parameter. Let us consider the generation
process of the velocity dispersion and how it can be shared in the whole region of the scale
k̃. As is stated in section 2, here we consider two possible scenarios depending on whether
the virialization of the scale k can be realized before t = t̃coll or not. The condition for the
realization of the virialization is given by

tvir = stcoll < t̃coll. (A.12)
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By using eq. (A.8), the inequality can be rewritten as

sH−1
entδ

−3/2
ent < H̃−1

entδ̃
−3/2
ent

⇔ sk−3δ
−3/2
ent < k̃−3δ̃

−3/2
ent

⇔ k2

k̃2
δent

δ̃ent
> s2/3 = O(1), (A.13)

where we have used the relation H̃ent/Hent = k̃3/k3. Hereafter we individually discuss the
two cases tvir < t̃coll (case I) and tvir > t̃coll (case II) in subsections A.3 and A.4, respectively.

A.3 Case I: generation through the virialization
Here, we consider the case tvir = stcoll < t̃coll, namely, the condition (A.13) is satisfied.
The virial theorem states that the kinetic energy K and the potential energy U satisfies
K = −U/2 = hM2/Rvir, where Rvir is the radius of the virialized halo. Since the total energy
is conserved and is given by −hM2/Rmax at the maximum expansion, we obtain

E = K + U = −K = −1
2Mσ2

v = −h M2

Rmax
. (A.14)

From this equation, we find

σ2
v = 2h M

Rmax
= h

2M
Rent

Rent
Rmax

' hδent, (A.15)

where we used 2M = Rent and eq. (A.9). In addition, from E = U/2 = Umax, we find
Rvir = Rmax/2, or equivalently,

ρvir = 8ρmax ' 8ρentδ
3
ent. (A.16)

The virialized halos behave as macroscopic particles until the mean density of the
scale k̃ becomes comparable to the virial density ρvir. Thus, we identify the time t = t∗ by
ρ̃(t∗) = ρvir = 8ρentδ

3
ent. This equation can be rewritten as

2δent =
(
ρ̃(t∗)
ρent

)1/3
= R̃(tent)

R̃(t∗)
= R̃ent

R̃(t∗)
aent
ãent

= R̃ent

R̃(t∗)
k̃2

k2 . (A.17)

From this equation and σ2
v(t∗) ' hδent, we obtain

σ2
v(t∗)R̃2(t∗) '

h

4δent

k̃4

k4 R̃
2
ent. (A.18)

Then, the condition (3.5) can be reduced to

δent <
h

9
k̃4

k4 . (A.19)

At first glance, the last inequality seems counterintuitive because we need a smaller value of
δent to obtain the significant effect of the velocity dispersion originating from the smaller scale
perturbations. However, this inequality indeed makes sense as follows. Since the virial radius
is given by Rvir = Rent/(2δent), the larger δent is, the smaller the size of the virialized halos
becomes. Therefore, under the condition that the virialization is realized before t = t̃coll, if
the value of δent is larger than the critical value, the virialized halos are too small and the
halo dissolution is too late to prevent PBH formation.
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A.4 Case II: direct generation from nonlinear perturbations

Here we consider the case tvir = stcoll > t̃coll, namely, the following inequality is satisfied:

k2

k̃2
δent

δ̃ent
> s2/3 = O(1). (A.20)

Even in this case, the growth of the smaller-scale perturbations is promoted as the contraction
of the scale k̃ proceeds. Then, the smaller-scale perturbations may get into the nonlinear
regime and produce caustics, and velocity dispersion is generated before the collapse of the
scale k̃. We assume that the velocity dispersion is shared in the whole region of the scale k̃
at the same time t∗ of its generation. To quantitatively evaluate the value of the velocity
dispersion, let us consider the linear-perturbation equation in the background closed universe.

A.4.1 Density perturbations in the closed FLRW universe
In the comoving gauge, the equation for the density perturbations of the scale k̃ in the closed
universe is given by (see, e.g., ref. [102])

(1− cos θ) d2

dθ2 δco + sin θ d
dθ δco − 3δco = 0. (A.21)

The growing-mode solution is given as follows (see, e.g., ref. [102]):

δco = δco,max
2

(5 + cos θ
1− cos θ −

3θ sin θ
(1− cos θ)2

)
= δco,max

(
θ2

20 +O(θ4)
)
, (A.22)

where δco,max = δco(π).
In order to relate the evolution of the perturbation δco to the density perturbation δ

defined in the flat FLRW model with the uniform Hubble slice, we need to clarify the relation
between the values of δent and δco,max. For this purpose, let us consider the value of δco at the
horizon entry. The horizon entry of the scale k is earlier than that of the scale k̃, so the EdS
approximation is valid at the horizon entry time as is discussed in section A.1. Then, we obtain

aentHent = k, (A.23)

Hent = H̃ent
k3

k̃3 = 2
3tent

. (A.24)

From the second equation, we find

tent = 2
3H̃ent

k̃3

k3 . (A.25)

Let us express tent by using the conformal time from eq. (A.7) as follows:

tent '
1

12H̃ent

(
H̃entãentηent

)3
, (A.26)

where we have used the approximation Ω̃ent ' 1. Then we obtain

ηent = 2 k̃
k

1
ãentH̃ent

. (A.27)
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From eq. (A.22), we can find

δco,ent ' K̃η2
ent
δco,max

20 = 1
5(Ω̃ent − 1) k̃

2

k2 δco,max = 1
5
k̃2

k2 δ̃entδco,max. (A.28)

Rewriting δco,max by using δco,ent, we obtain

δco = 5
2
k2

k̃2
δco,ent

δ̃ent

(5 + cos θ
1− cos θ −

3θ sin θ
(1− cos θ)2

)
. (A.29)

It is known that the density perturbations δco in the comoving gauge and δ in the uniform
Hubble gauge is related to each other as δco ' (3/5)δ on super-horizon scales (see, e.g.,
ref. [63]). Then, we extrapolate this relation to the horizon entry, that is, we use the relation
δco,ent ' (3/5)δent. By using this relation, we finally obtain the following expression:

δco = 3
2
k2

k̃2
δent

δ̃ent

(5 + cos θ
1− cos θ −

3θ sin θ
(1− cos θ)2

)
. (A.30)

A.4.2 Estimation of the velocity dispersion

To evaluate the velocity dispersion, we consider the velocity perturbation in the comoving
gauge. In the comoving gauge, the velocity potential φv is related to the density perturbation
as [102]

φv = −(4+ 3K̃)−1 d
dη δco, (A.31)

where4 is the Laplacian. The spatial curvature contribution can be estimated as K̃ = δ̃entk̃
2 �

k2, and the contribution is negligible compared to the Laplacian term. Then, we have

φv ' k−2 d
dη δco. (A.32)

The absolute value v of the velocity can be estimated as follows:

v ' kφv ' k−1 d

dη
δco. (A.33)

From the following equations

R̃(θ) = R̃ent
ã

ãent
= R̃ent

2
Ω̃ent

Ω̃ent − 1
(1− cos θ), (A.34)

v(θ) '
d
dη δco

k
= 9

2
k

k̃

1√
Ω̃ent − 1

δent
2θ + θ cos θ − 3 sin θ

(1− cos θ)2 , (A.35)

we obtain
R̃(θ)
R̃ent

v(θ) ' 9
4
k

k̃
δ̃
−3/2
ent δent

2θ + θ cos θ − 3 sin θ
1− cos θ , (A.36)

where we have used Ω̃ent − 1 = δ̃ent.
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Let us suppose that the linear perturbations continue to grow until they enter the
nonlinear regime, and caustics appear. Assuming this happens around when δco ∼ 1, we
adopt the value of v at the time t = t∗ defined by δco = 1 for the value of σv(t∗). Letting θ∗
denote the value of θ at t = t∗, we find

1 = δco(θ∗) = 3
2
k2

k̃2
δent

δ̃ent

5− 4 cos θ∗ − cos2 θ∗ − 3θ∗ sin θ∗
(1− cos θ∗)2 . (A.37)

From the inequality (A.20), we can find θ∗ & 2.2. Arranging the equation for θ∗, we can
derive the following equation:

(1− cos θ∗)−1 = 22/33−2/3δ̃
2/3
ent

(
k

k̃

)−4/3
δ
−2/3
ent

(
5− 4 cos θ∗ − cos2 θ∗ − 3θ∗ sin θ∗√

1− cos θ∗

)−2/3

.

(A.38)
Substituting this equation into eq. (A.36), we obtain

R̃(θ∗)
R̃ent

σv(θ∗) '
R̃(θ∗)
R̃ent

v(θ∗) ' 34/32−4/3
(
k

k̃

)−1/3
δ̃
−5/6
ent δ

1/3
ent Ξ(θ∗), (A.39)

where

Ξ(θ∗) := (2θ∗ + θ∗ cos θ∗ − 3 sin θ∗)
(

5− 4 cos θ∗ − cos2 θ∗ − 3θ∗ sin θ∗√
1− cos θ∗

)−2/3

. (A.40)

Because Ξ(θ∗) is a monotonic function of θ∗ satisfying Ξ(2.2) ' 0.56 and Ξ(2π) = (3π)1/3 ' 2.1,
we can treat Ξ(θ∗) as a factor of order 1. Then the PBH non-formation condition (3.5) can
be rewritten as

b
k̃

k
δ̃
−5/2
ent δent > 1, (A.41)

where
b := 3

2Ξ3(θ∗) = O(1). (A.42)
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