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The rapid advancement of gravitational wave astronomy in recent years has paved the way for the
burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes
by their quasinormal modes (QNMs). In this paper, the axial gravitational perturbations and the QNM
frequencies of black holes in the hybrid metric-Palatini gravity (HMPG) are investigated. The HMPG
theory is characterized by a dynamical scalar degree of freedom and is able to explain the late-time
accelerating expansion of the universe without introducing any ad hoc screening mechanism to preserve the
dynamics at the Solar System scale. We obtain the master equation governing the axial gravitational
perturbations of the HMPG black holes and calculate the QNM frequencies. Moreover, in the scrutiny of
the black holes and their QNMs, we take into account the constraints on the model parameters based on the
post-Newtonian analysis, and show how the QNM frequencies of the HMPG black holes would be altered
in the observationally consistent range of parameter space.
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I. INTRODUCTION

The recent direct detection of gravitational waves [1,2] is
undoubtedly a major breakthrough in the field of modern
physics, because it not only verifies the existence of
gravitational waves predicted by Einstein’s general rela-
tivity (GR), but also ushers in a new era of gravitational
wave astronomy. In particular, the gravitational waves
emitted from black hole mergers typically contain a wealth
of information regarding the nature of spacetime under
strong gravitational fields, which is usually unattainable
with electromagnetic observations only. Furthermore, one
can also make use of these powerful gravitational wave
telescopes to examine whether our current understanding of
black hole physics based on GR should be revised, hence to
test the underlying theories of gravity.
A typical merger event of a binary black hole system

consists of three stages [3,4]. The first one is the inspiral
stage, during which the two black holes rotate around each
other, and the properties in this process, including the
emitted gravitational waves (known as the chirp signals),
can be well-approximated by post-Newtonian methods.
The second stage is the merger stage. At this stage, the

gravitational field is extremely strong and the process can
only be modeled numerically. The last stage is the ring-
down stage during which the final black hole formed after
the merger gradually settles. The distortion of the final
black hole in shape undergoes decaying oscillations, which
are essentially a superposition of several modes, called
quasinormal modes (QNMs). Due to the dissipative
nature of the system at this stage, the frequencies of
QNMs are complex-valued, whose real part describes
the oscillation, and the imaginary part corresponds to the
exponential decay of the amplitudes. The ringdown stage
can be essentially described using the theory of black hole
perturbations. Remarkably, the QNM frequencies only
depend on the parameters that describe the final black
holes and they are independent of how the modes are
triggered in the first place. Therefore, black hole QNMs can
be a very powerful tool to test the black hole no-hair
theorem as well as the underlying theories of gravity. This
is the focus of this paper. We would like to refer the readers
to Refs. [5–7] for reviews about black hole QNMs.
Among the plethora of gravitational theories, we will

consider the black hole perturbations and the QNMs in the
hybrid metric-Palatini gravity (HMPG) [8], in which the
gravitational action consists of the standard Einstein-
Hilbert term constructed solely by the metric gμν, as well
as a function of another Ricci scalar which is defined based
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on the Palatini variation principle. One of the important
features of HMPG is that the theory allows the existence of
a long-range dynamical scalar field, such that the scalar
field can drive the accelerating expansion of the universe at
the cosmological scale. Also, as will be shown later, it is
possible that the scalar field does not alter the dynamics at
the local Solar System scale. Therefore, it seems not
necessary to introduce any additional screening mechanism
in this theory [9], which is usually needed in other theories
such as the metric-fðRÞ gravity [10,11]. In addition, unlike
the Palatini-fðRÞ gravity [12], the HMPG theory contains
one dynamical scalar degree of freedom,1 and the theory
does not suffer from the microscopic instabilities in the
Palatini-fðRÞ gravity.
Ever since it was proposed, the HMPG theory has

received wide attention. In cosmology, some interesting
cosmological solutions have been found [13,14], inflation
[15] and cosmological perturbations [16] have been stud-
ied, and the dynamical analysis of HMPG cosmology has
been carried out [17]. The HMPG theory can be tested from
cosmological observations [18–20]. In astrophysics, it has
been shown that the HMPG scalar field could mimic the
behavior of dark matter [21,22], especially describe the flat
region in galactic rotation curves [23]. In addition, the
HMPG theory is able to support wormhole geometries
[24–26]. Very recently, the black hole solutions [27–29],
stringlike objects [30,31], and other compact stellar objects
[32] in HMPG have also been investigated. The Cauchy
problem [33], the Noether symmetry [34], the post-
Newtonian analysis [35,36], and constraints from stellar
motions [37] have been studied. Furthermore, the HMPG
theory can be extended by including higher dimensions
[38] and torsion fields [39], with the motivation of the
latter being to consider spinors. Recently, the hybrid
formalism has been shown to preserve the Weyl symmetry
when trying to unify the theory with standard model
particles [40]. Also, a natural extension of the HMPG
theory is to consider a general function of the two Ricci
scalars [41,42]. This generalized HMPG theory contains
two additional scalar degrees of freedom and has been
explored in cosmology [43–46] and astrophysics [47,48],
although its hybrid structure may cause unwanted insta-
bilities [49,50]. For the review on HMPG, we refer the
readers to Refs. [51,52].
In this paper, we will adopt the scalar-tensor representa-

tion of the HMPG theory. Due to the complexity of the
field equations, we will follow the work in Ref. [27] to
obtain the black hole solutions using numerical integra-
tions. As opposed to the Palatini-fðRÞ gravity, whose
QNMs of charged black hole perturbations were studied
in Refs. [53,54], the HMPG theory contains a dynamical

scalar degree of freedom and it is possible to obtain vacuum
spacetimes different from their GR counterparts. We will
focus on the spherically symmetric black hole spacetime in
which both Ricci scalars are zero but the Ricci tensor is
generically not. The black hole solutions will be obtained
under the consideration of the requirements from the post-
Newtonian analysis. We will focus on the axial gravita-
tional perturbations of the HMPG black holes and derive
the master equation. The QNM frequencies will be evalu-
ated using the 6th orderWentzel-Kramers-Brillouin (WKB)
method [55].
This paper is outlined as follows. In Sec. II, we briefly

review the formulation of the HMPG theory and its scalar-
tensor representation. The previously obtained results of the
post-Newtonian analysis are reviewed as well. In Sec. III,
the HMPG black holes are studied numerically. In Sec. IV,
we derive the master equation governing the axial gravita-
tional perturbations for the HMPG black holes and calculate
the QNM frequencies. We finally conclude in Sec. V.

II. HMPG FORMULATION

In this section, we will briefly review the HMPG theory
[8], including its action, equations of motion, and some of
its important properties. We will demonstrate that the
theory can be recast into the scalar-tensor representation.
It turns out that the calculations that we are going to go
through in this paper are more straightforward within this
representation. Then, we will review the post-Newtonian
analysis of HMPG and present its main results [8,35,36].
The results of the post-Newtonian analysis not only exhibit
the motivations of considering HMPG, but also turn out to
be important in our later usage when investigating black
hole perturbations in the theory.

A. HMPG and its scalar-tensor representation

The action of HMPG is written as [8]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð2:1Þ

where Sm ≡ R
d4x

ffiffiffiffiffiffi−gp
Lm is the matter action and

κ ≡ 8πG. The Ricci scalar R is constructed solely by the
metric gμν and it stands for the Einstein-Hilbert term in the
gravitational action. The second term in the action is a
function of another curvature invariant R≡ gμνRμν, which
comes from the contraction between the metric and the
Ricci tensor constructed solely by the independent affine
connection Γ̂, namely

Rμν ≡ ∂σΓ̂σ
μν − ∂νΓ̂σ

μσ þ Γ̂σ
σρΓ̂

ρ
μν − Γ̂σ

μρΓ̂
ρ
σν: ð2:2Þ

Therefore, the gravitational modifications on top of the
Einstein-Hilbert action are contributed by the addition of
fðRÞ term.

1In the literature, the HMPG theory is also called fðXÞ gravity,
where X is a dynamical scalar degree of freedom quantifying the
nonzeroness of the trace of the Einstein equation [13].
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Since the action contains an affine connection which is
independent of the metric gμν, one has to vary the action
with respect to them separately to derive the equations of
motion. After varying the action (2.1) with respect to the
metric, we can directly obtain the field equation

Gμν þ fRRμν −
1

2
fðRÞgμν ¼ κ2Tμν; ð2:3Þ

where Gμν is the Einstein tensor defined by gμν, and
fR ≡ dfðRÞ=dR. The energy-momentum tensor Tμν is
defined as

Tμν ≡ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

; ð2:4Þ

where the matter is assumed to couple with the metric gμν
only. Besides, after varying the action with respect to the
independent connection, we get

∇̂σð
ffiffiffiffiffiffi
−g

p
fRgμνÞ ¼ 0: ð2:5Þ

In the above expression, ∇̂ denotes the covariant derivative
defined by the affine connection Γ̂. Equation (2.5) implies
that the independent connection is compatible with an
auxiliary metric qμν ≡ fRgμν, which is conformal to gμν.
Therefore, the HMPG theory looks like a bimetric theory,
with a physical metric gμν and an auxiliary metric qμν, while
only one scalar degree of freedom is involved due to the
conformal relation between the metrics. Note that in the
metric-fðRÞ and the Palatini-fðRÞ theories, one can also
define an auxiliary metric conformal to the physical metric.
However, due to the hybrid structure of the HMPG theory,
the HMPG theory is completely different from the other
two kinds of fðRÞ theories, and it acquires distinctive
physical properties, as will be shown later.
Similar to the metric-fðRÞ and Palatini-fðRÞ gravity, the

HMPG theory can also be formulated in a scalar-tensor
representation [8]. By introducing an auxiliary field χ, the
action (2.1) can be rewritten as

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðχÞ þ fχðR − χÞ� þ Sm; ð2:6Þ

where fχ ≡ dfðχÞ=dχ. By varying the action (2.6) with
respect to χ, we find that χ ¼ R. Thus, if d2f=dR2 ≠ 0, the
field χ is dynamically equivalent to the Ricci scalar R.
Furthermore, with the following definitions

ϕ≡ fχ ; VðϕÞ≡ χfχ − fðχÞ; ð2:7Þ

we obtain the scalar-tensor representation of the HMPG
theory

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ ϕR − VðϕÞ� þ Sm: ð2:8Þ

The equations of motion of HMPG in the scalar-tensor
representation can be obtained by varying the action (2.8)
with respect to the metric gμν, the scalar field ϕ, and the
affine connection:

Rμν þ ϕRμν −
1

2
½Rþ ϕR − VðϕÞ�gμν ¼ κ2Tμν; ð2:9Þ

R − Vϕ ¼ 0; ð2:10Þ

∇̂σð
ffiffiffiffiffiffi
−g

p
ϕgμνÞ ¼ 0; ð2:11Þ

respectively. Since Eqs. (2.5) and (2.11) imply that the
affine connection is the Levi-Civita connection of the
auxiliary metric qμν ≡ ϕgμν, which is conformally related
to the original metric gμν, one can obtain the relation
between Rμν and Rμν as follows

Rμν¼Rμνþ
3

2ϕ2
∂μϕ∂νϕ−

1

ϕ

�
∇μ∇νϕþ

1

2
gμν□ϕ

�
: ð2:12Þ

Note that the covariant derivative ∇μ here is constructed
from the metric gμν. The two Ricci scalars are thus
related by

R ¼ Rþ 3

2ϕ2
∂μϕ∂μϕ −

3

ϕ
□ϕ: ð2:13Þ

Replacing the Ricci scalar R in Eq. (2.8) with the relation
(2.13), the action (2.8) can be rewritten as

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ð1þ ϕÞRþ 3

2ϕ
∂μϕ∂μϕ − VðϕÞ

�

þ Sm: ð2:14Þ

It should be emphasized that the action (2.14) is very
similar to that of the Palatini-fðRÞ gravity in its Brans-
Dicke representation. The only difference is that in the
Palatini-fðRÞ gravity, the coupling between the scalar field
and the Ricci scalar R appears in the form of ϕR, while in
the action (2.14) it appears as ð1þ ϕÞR.2 difference in the
scalar-curvature coupling would render It will be shown
later that this slight the HMPG theory a distinctive feature
as compared with the Palatini-fðRÞ gravity.
In order to have a clearer picture of how the scalar field ϕ

modifies GR and changes the Einstein equations, we follow
the procedure in Ref. [27] and rewrite Eq. (2.9) by using the
relation (2.12). One can obtain the following equation

2Note that the theory described by the action (2.14) actually
belongs to the Bergmann-Wagoner-Nordtvedt types of scalar-
tensor theories [56–58].
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Gμν ¼ κ2Teff
μν ; ð2:15Þ

where the effective energy-momentum tensor is defined as

Teff
μν ¼ 1

1þ ϕ

�
Tμν −

1

κ2

�
1

2
gμνðV þ 2□ϕÞ −∇μ∇νϕ

þ 3

2ϕ
∂μϕ∂νϕ −

3

4ϕ
gμνð∂αϕ∂αϕÞ

��
: ð2:16Þ

Besides, by utilizing Eqs. (2.10) and (2.13), one can obtain
the equation of motion of the scalar field as follows

−□ϕþ 1

2ϕ
∂μϕ∂μϕþϕ½2V− ð1þϕÞVϕ�

3
¼ϕκ2

3
T; ð2:17Þ

where Vϕ ≡ dV=dϕ and T ≡ gμνTμν stands for the trace of
the energy-momentum tensor in the matter sector.
An important feature indicated by the equations of

motion (2.15) and (2.17) is that unlike the Palatini-fðRÞ
theory, the scalar field ϕ in the HMPG theory is dynamical.
In fact, in the Palatini-fðRÞ gravity, the scalar field is
nondynamical and the field equations can be recast in an
expression with nontrivial couplings between gravity and
matter sectors. These couplings usually cause instabilities
at microscopic scales [12]. In contrast, the scalar field in the
HMPG theory is dynamical and so it does not suffer from
the microscopic instabilities mentioned above. Also, it can
be proven that the energy-momentum tensor is conserved,
i.e., ∇μTμν ¼ 0, in the HMPG theory because the matter
field only couples to the physical metric gμν.

B. The post-Newtonian analysis

As we have mentioned in the Introduction, one of the
advantages of the HMPG theory is that it can successfully
describe the late-time expansion of our universe without
altering the dynamics at the Solar System scale. This
interesting feature can be directly appreciated with the
post-Newtonian analysis. The post-Newtonian analysis of
the HMPG theory was firstly presented together with the
proposal of the theory itself [8]. Later, extensions to higher
orders are carried out in Refs. [35,36]. Here, we shall
briefly mention the results of the analysis.
To illustrate how the physics at the Solar System

scale would be modified in the HMPG theory, one can
study its associated post-Newtonian parameters [51]. In the
weak-field and slow-motion limit, we consider a quasi-
Minkowskian spacetime: gμν ≈ ημν þ hμν with jhμνj ≪ 1
and ϕ ¼ ϕ0 þ ϕ1ðxÞ, where ϕ0 is the value of the
scalar field at the asymptotically distant region. The
subleading order term of the scalar field ϕ1ðxÞ is
assumed to be time independent due to the slow-velocity
assumption. Expanding up to Oðh2Þ, one can obtain the
perturbed metric as follows [35,36]:

h00 ¼
2M

ð1þ ϕ0Þr
�
1 −

ϕ0

3
e−mϕr

�
; ð2:18Þ

hij ¼
2M

ð1þ ϕ0Þr
�
1þ ϕ0

3
e−mϕr

�
δij; ð2:19Þ

whereM denotes the mass of the local object. On the above
expression, the mass of the scalar field is defined via

m2
ϕ ¼ ½2V − Vϕ − ϕð1þ ϕÞVϕϕ�=3jϕ¼ϕ0

: ð2:20Þ

The perturbed scalar field ϕ1 can be written as

ϕ1 ¼ −
κ2

12π

ϕ0M
r

e−mϕr: ð2:21Þ

Using the above equations, one can extract the effective
gravitational constant and the post-Newtonian parameter γ as

Geff ≡ κ2

8πð1þ ϕ0Þ
�
1 −

ϕ0

3
e−mϕr

�
; ð2:22Þ

γ ≡ 1þ ðϕ0=3Þe−mϕr

1 − ðϕ0=3Þe−mϕr
: ð2:23Þ

It can be seen from Eq. (2.23) that for the HMPG theory
to be consistent with the local gravitational tests at the Solar
System scale, i.e., γ ≈ 1, one may require a very massive
scalar field ϕ as in the case of the metric-fðRÞ theory. It is
well-known that this assumption is not consistent with the
requirement that the scalar field has to be long-rang in order
to modify the cosmological dynamics. In the HMPG
theory, it is possible to have a long-range scalar field while
remain the dynamics in the local scale intact. This can be
achieved by imposing a very small background field ϕ0≪1
such that the magnitude of mϕ, that is, the Yukawa-type
correction, does not affect too much on γ. With a small
asymptotic scalar field ϕ0, the theory is able to survive from
local tests of gravity, and at the meantime the long-range
Yukawa interaction induced by the scalar field can modify
the cosmological dynamics of the universe.
At this point, we would like to emphasize that the results

of the post-Newtonian analysis, especially Eqs. (2.18) and
(2.19) as well as the fact that ϕ1 has a prefactor ϕ0 [see
Eq. (2.21)], will be taken into account when we investigate
the black hole solutions of HMPG and their perturba-
tions later.

III. BLACK HOLE SOLUTIONS IN HMPG

In order to investigate the black hole perturbations and
QNMs in HMPG, one has to specify the black hole
spacetime that is going to be perturbed. For the sake of
simplicity, in this paper we will consider static and spheri-
cally symmetric black holes and investigate their gravita-
tional perturbations. Also, in the rest of the paper, we will
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consider vacuum solutions (Tμν ¼ 0). It should be empha-
sized that in the presence of the dynamical scalar field, the
static and spherically symmetric vacuum solution in HMPG
could be different from the Schwarzschild solution. By
focusing on the vacuum black hole solutions and their
perturbations, we are able to directly understand how the
black hole spacetime and QNMs are changed due to the
geometrical corrections induced by the dynamical scalar
field (or in other words, the corrections induced from the
fðRÞ modification in Eq. (2.1). Because of the complexity
in the equations of motion, the black hole solutions in
HMPG have been investigated purely numerically in
Ref. [27], in which the authors focused on the spacetime
outside the horizon and indicated the position of the event
horizon by the existence of a Killing horizon for the
timelike Killing vector in the metric tensor components.3

As will be shown later, the quasinormal modes of a black
hole are determined by the spacetime property outside the
horizon. Therefore, in this section we will adopt the
procedures in Ref. [27] and solve the black hole solutions
numerically.
We will investigate the static and spherically symmetric

solutions of the HMPG theory. The line element describing
such a geometry can be generally represented by

ds2¼−FðrÞdt2þ 1

GðrÞdr
2þ r2dθ2þ r2sin2θdφ2: ð3:1Þ

The metric functions FðrÞ and GðrÞ only depend on the
radial coordinate r. In the following calculations, we will
focus on the spacetime outside the event horizon, namely,
the range rH < r < ∞, where rH is the event horizon of the
black hole. Note that the metric functions FðrÞ and GðrÞ
would vanish at the horizon.
Inserting the metric ansatz (3.1) into the equations of

motion (2.15) and (2.17), one obtains

1

r2
ð1 −G − rG0Þð1þ ϕÞ −G

�
ϕ00 −

3ϕ02

4ϕ

�

−
ϕ0

2r
ðrG0 þ 4GÞ − VðϕÞ

2
¼ 0; ð3:2Þ

�
1

r2
ðG − 1Þ þ GF0

rF

�
ð1þ ϕÞ

þ ϕ0G
�
F0

2F
þ 2

r
þ 3ϕ0

4ϕ

�
þ VðϕÞ

2
¼ 0; ð3:3Þ

and

− G

�
ϕ00 þ F0ϕ0

2F
−
ϕ02

2ϕ
þ 2ϕ0

r

�
−
1

2
G0ϕ0

þ ϕ

3
½2V − ð1þ ϕÞVϕ� ¼ 0; ð3:4Þ

respectively, where the prime denotes the derivative with
respect to r. Equations (3.2) and (3.3) are the tt and rr
components of the modified Einstein equation (2.15),
respectively. Notice that the angular components of
Eq. (2.15) are not provided here since they are proven to
be redundant. For the sake of simplicity, we define a new
function uðrÞ≡ ϕ0ðrÞ. Then, one can obtain (see Ref. [27]
for more detail):

G0ðrÞ ¼ 1

2rϕð2þ 2ϕþ urÞ ½4ϕð1þ ϕÞð1 −GÞ

− 2r2ϕV − 8Gruϕþ 3Gr2u2 − 4Gr2u0ϕ�; ð3:5Þ

F0ðrÞ ¼ F
2Grϕð2þ 2ϕþ urÞ ½4ϕð1þ ϕÞð1 −GÞ

− 2r2ϕV − 8Gruϕ − 3Gr2u2�; ð3:6Þ

u0ðrÞ ¼ u
2

�
u
ϕ
−
F0

F
−
4

r

�

þ 1

G

�
2ϕ

3

�
V −

1þ ϕ

2
Vϕ

�
−
G0u
2

�
: ð3:7Þ

After introducing a new variable ξ ¼ 1=r, we have [27]

dϕ
dξ

¼ −
u
ξ2

; ð3:8Þ

−ξ2
dG
dξ

¼ ξ

2ϕð2þ 2ϕþ u=ξÞ
�
4ϕð1þ ϕÞð1 −GÞ

−
2Vϕ
ξ2

−
8Gϕu
ξ

þ 3Gu2

ξ2
þ 4Gϕ

du
dξ

�
; ð3:9Þ

−ξ2
dF
dξ

¼ Fξ
2Gϕð2þ 2ϕþ u=ξÞ

�
4ϕð1þ ϕÞð1 −GÞ

−
2Vϕ
ξ2

−
8Gϕu
ξ

−
3Gu2

ξ2

�
; ð3:10Þ

−ξ2
du
dξ

¼ u
2

�
u
ϕ
þ ξ2

F
dF
dξ

− 4ξ

�

þ 1

G

�
2ϕ

3

�
V −

1þ ϕ

2
Vϕ

�
þ ξ2u

2

dG
dξ

�
: ð3:11Þ

Furthermore, the derivatives of F and G appearing in
Eq. (3.11) can be substituted by using Eqs. (3.9) and (3.10).
This yields

3It was pointed out very recently in Refs. [28,29] that in
HMPGwith a zero potential VðϕÞ, asymptotically flat black holes
with a single horizon do not exist generically. They may exist
only in some special cases.
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−ξ2G
du
dξ

¼ uG
2

�
u
ϕ
− 4ξ

�
−

uξ
2þ 2ϕþ u=ξ

×

�
2ð1þ ϕÞð1 −GÞ − V

ξ2
−
4Gu
ξ

þG
du
dξ

�

þ VðϕÞ; ð3:12Þ

where

VðϕÞ≡ 2ϕ

3

�
V −

1þ ϕ

2
Vϕ

�
: ð3:13Þ

In principle, after specifying the potential VðϕÞ and
imposing the boundary conditions, we can use the set of
differential equations (3.8), (3.9), (3.10), and (3.12) to solve
the functions F, G, ϕ, and u. At this point, we will further
assume that the scalar field potential is zero, namely,
VðϕÞ ¼ 0. The spacetime is assumed to be asymptotically
flat. For the black holes in the HMPG theory, the value of
the scalar field potential at the asymptotic region r → ∞
defines an effective cosmological constant. Therefore, the
scalar field potential should approach zero when r → ∞ for
an asymptotically flat spacetime. A vanishing potential
VðϕÞ ¼ 0 turns out to be the simplest choice in the sense
that the black hole, besides its mass, would then be
completely described by the scalar field ϕ and its derivative
ϕ0 at the asymptotic region. If one includes a nontrivial
potential, the parameters of the potential would come into
play, hence enlarge the parameter space. In fact, when
VðϕÞ ¼ 0, it can be shown that the two Ricci scalars are
identically zero, that is, R ¼ R ¼ 0. However, as has been
shown in Ref. [27–29], the Ricci tensor would not vanish in
general if the scalar field is dynamical. The black hole
would differ from the Schwarzschild counterpart, even
for VðϕÞ ¼ 0.
The boundary conditions, on the other hand, should be

imposed properly in order to respect the asymptotic flatness
condition. More precisely, we have to assume the asymp-
totic value of the scalar field ϕ0, which is supposed to be
very tiny according to the post-Newtonian constraints.
Then, the metric functions F and G at the asymptotic
region (ξ → 0), should also be imposed according to the
post-Newtonian results, namely, Eqs. (2.18) and (2.19).
Finally, the asymptotic value of the function u can be
determined by using Eq. (2.21). It should be noticed that at
the asymptotic region where ξ → 0, the function u can be
approximated as u ≈ ϕ0ξ

2, which is roughly proportional to
ϕ0 and is extremely small.4 After imposing these boundary
conditions, the equations of motion describing the metric
functions and the scalar field can be integrated numerically.

IV. AXIAL PERTURBATIONS AND QNMs

As we have mentioned previously, the static and spheri-
cally symmetric vacuum solutions in HMPG are generi-
cally different from the Schwarzschild solution due to the
presence of the dynamical scalar field. Even though we
have assumed a zero potential VðϕÞ ¼ 0 and the two Ricci
scalars are identically zero, the dynamical scalar field
would still alter the geometry and, in principle, leave some
observational imprints with which one can distinguish them
from their GR counterpart. In this section, we will focus on
the axial gravitational perturbations of the aforementioned
black hole solutions in HMPG and compute the corre-
sponding QNM frequencies after we obtain the master
equation governing the perturbations. The master equation
will be derived by using the tetrad formalism.
Without loss of generality, the perturbed metric of a static

and spherically symmetric spacetime can be described by a
nonstationary and axisymmetric metric whose symmetrical
axis is tuned such that the spacetime metric does not
depend on the azimuthal angle φ [59]. In practice, an
axisymmetric mode can be decomposed into a complete set
of non-axisymmetric modes. At the level of linear approx-
imations, the radial dependence of the modes is not affected
by this angular decomposition [59]. Since the master
equation of the modes is determined by the radial depend-
ence in the mode decomposition, it is not affected by
choosing a different polar axis in the coordinate system.
This is essentially the same as in quantum mechanics why
the radial wave function of an electron in a central field
does not depend on the magnetic quantum number m.
If we consider only the axial perturbations, the perturbed

spacetime metric gμν can be written as

ds2 ¼ −FðrÞdt2 þ r2sin2θðdφ − ζdt − q2dr − q3dθÞ2

þ dr2

GðrÞ þ r2dθ2: ð4:1Þ

On the above perturbed metric, the axial perturbations are
encoded in the functions ζ, q2, and q3. These functions,
therefore, are functions of t, r, and θ. Since we only focus
on the axial gravitational perturbations which are basically
some combinations of the functions ζ, q2, and q3, the
metric functions F and G are treated as the zeroth order
quantities and they are functions of r only.

A. Tetrad formalism

We are going to derive the master equation by using the
tetrad formalism [59]. The calculations within the tetrad
formalism are based on the construction of a new tetrad
frame, which is constructed by a basis eμðaÞ associated with
the original spacetime metric gμν. Note that the tetrad
indices are enclosed in parentheses to distinguish them
from the tensor indices. The tetrad basis should satisfy

4Wewould like to mention that in the numerical calculations of
Ref. [27], the asymptotic values of ϕ and u are set independently.
See Figs. 1 and 2 in Ref. [27].
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eðaÞμ eμðbÞ ¼ δðaÞðbÞ; eðaÞμ eνðaÞ ¼ δνμ;

eðaÞμ ¼ gμνηðaÞðbÞeνðbÞ;

gμν ¼ ηðaÞðbÞe
ðaÞ
μ eðbÞν ≡ eðaÞμe

ðaÞ
ν : ð4:2Þ

Essentially, one chooses a tetrad basis such that the basis
projects the relevant quantities on the original coordinate
basis of gμν onto a particular basis of ηðaÞðbÞ, which is
commonly assumed to be the Minkowskian matrix

ηðaÞðbÞ ¼ ηðaÞðbÞ ¼ diagð−1; 1; 1; 1Þ: ð4:3Þ

Therefore, in the tetrad formalism, any vector or tensor field
defined on the coordinate basis can be projected onto the
tetrad frame, in which the fields can be expressed through
their tetrad components:

Aμ ¼ eðaÞμ AðaÞ; AðaÞ ¼ eμðaÞAμ;

Bμν ¼ eðaÞμ eðbÞν BðaÞðbÞ; BðaÞðbÞ ¼ eμðaÞe
ν
ðbÞBμν: ð4:4Þ

On the other hand, the derivatives defined on the coordinate
basis have to be manipulated with great care. Indeed, in the
tetrad frame, the covariant (partial) derivative in the original
coordinate frame is replaced with the intrinsic (directional)
derivative. For instance, the derivatives of an arbitrary rank
two object Hμν in the two frames are related through the
following equation:

HðaÞðbÞjðcÞ ≡ eλðcÞHμν;λe
μ
ðaÞe

ν
ðbÞ

¼ HðaÞðbÞ;ðcÞ

− ηðmÞðnÞðγðnÞðaÞðcÞHðmÞðbÞ þ γðnÞðbÞðcÞHðaÞðmÞÞ;
ð4:5Þ

where a vertical rule and a comma denote the intrinsic and
directional derivative with respect to the tetrad indices,
respectively. A semicolon stands for a covariant derivative
with respect to the tensor indices. On the above expression
(4.5), the Ricci rotation coefficients are defined by

γðcÞðaÞðbÞ ≡ eμðbÞeðaÞν;μe
ν
ðcÞ: ð4:6Þ

For more detail about the introduction and applications of
the tetrad formalism, we refer the readers to Ref. [59].
At this point, we shall choose the following tetrad basis

associated with the perturbed metric (4.1)5:

eμðtÞ ¼ ðF−1=2; ζF−1=2; 0; 0Þ;

eμðφÞ ¼
�
0;

1

r sin θ
; 0; 0

�
;

eμðrÞ ¼ ð0; q2G1=2; G1=2; 0Þ;
eμðθÞ ¼ ð0; q3=r; 0; 1=rÞ; ð4:7Þ

and

eðtÞμ ¼ ðF1=2; 0; 0; 0Þ;
eðφÞμ ¼ ð−ζ; 1;−q2;−q3Þr sin θ;

eðrÞμ ¼ ð0; 0; G−1=2; 0Þ;
eðθÞμ ¼ ð0; 0; 0; rÞ; ð4:8Þ

B. Master equation

The field equation in HMPG, when written in the scalar-
tensor representation, is given by Eqs. (2.15) and (2.16). In
the tetrad frame, the field equation can be written as

GðaÞðbÞð1þ ϕÞ ¼ −
1

2
ηðaÞðbÞðV þ 2□ϕÞ þ 3

4ϕ
ηðaÞðbÞð∂ϕÞ2

−
3

2ϕ
ϕ;ðaÞϕ;ðbÞ þ eμðaÞðϕ;ðbÞÞ;μ

− γðcÞðbÞðaÞϕ;ðdÞηðcÞðdÞ: ð4:9Þ

Note that we have assumed a zero energy-momentum
tensor. The master equation governing the gravitational
perturbations is derived by linearizing the field equa-
tion (4.9). Using the tetrad basis given in Eqs. (4.7) and
(4.8), the ðθ;φÞ and ðr;φÞ components of the linearized
field equation (4.9) read

RðθÞðφÞð1þ ϕÞ ¼ −γðrÞðφÞðθÞϕ;ðrÞ;

RðrÞðφÞ ¼ 0;

which can be written explicitly as

½ð1þ ϕÞr2
ffiffiffiffiffiffiffi
FG

p
sin3θðq2;θ − q3;rÞ�;r

¼ ð1þ ϕÞ r
2sin3θffiffiffiffiffiffiffi
FG

p ðζ;θ − q3;tÞ;t; ð4:10Þ

½r2
ffiffiffiffiffiffiffi
FG

p
sin3θðq2;θ − q3;rÞ�;θ

¼ r4sin3θ

ffiffiffiffi
G
F

r
ðq2;t − ζ;rÞ;t; ð4:11Þ

respectively. Defining the following new variable

Q≡ ð1þ ϕÞr2
ffiffiffiffiffiffiffi
FG

p
sin3θðq2;θ − q3;rÞ; ð4:12Þ

5The HMPG theory is a Lorentz invariant theory and the
choice of the tetrad basis is not unique. However, the choice of
Eq. (4.7) is the most natural one and choosing other basis shall
not change the result of the master equation.
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and eliminating ζ in Eqs. (4.10) and (4.11), we get

ð1þ ϕÞ
� ffiffiffiffiffiffiffi

FG
p

Q;r

ð1þ ϕÞr2
�
;r

þ
ffiffiffiffi
F
G

r
sin3θ
r4

�
Q;θ

sin3θ

�
;θ
¼ Q;tt

r2
ffiffiffiffiffiffiffi
FG

p : ð4:13Þ

Then, we consider the Fourier decomposition and the
following ansatz:

Qðr; θÞ ¼ QðrÞYðθÞ; ð4:14Þ

where YðθÞ is the Gegenbauer function [60] and it satisfies

d
dθ

�
1

sin3θ
dY
dθ

�
¼ −½lðlþ 1Þ − 2� Y

sin3θ
; ð4:15Þ

with l being the multipole number. Using the above
definitions, Eq. (4.13) can be rewritten as

ð1þ ϕÞ
� ffiffiffiffiffiffiffi

FG
p

Q;r

ð1þ ϕÞr2
�
;r

−
ffiffiffiffi
F
G

r
½lðlþ 1Þ − 2�

r4
Q ¼ −

ω2Q

r2
ffiffiffiffiffiffiffi
FG

p : ð4:16Þ

Finally, we define

ψg ≡Q=X ; ð4:17Þ

where X ≡ r
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ

p
, and use the tortoise radius r�

defined as

dr
dr�

¼
ffiffiffiffiffiffiffi
FG

p
: ð4:18Þ

The master equation (4.16) can be written in a Schrödinger-
like form:

∂2
r�ψg þ ω2ψg ¼ VgðrÞψg; ð4:19Þ

where the effective potential VgðrÞ reads6

VgðrÞ ¼ F

�
lðlþ 1Þ − 2

r2
− X

ffiffiffiffi
G
F

r � ffiffiffiffiffiffiffi
FG

p
X ;r

X2

�
;r

�
: ð4:20Þ

The master equation (4.19) and the potential (4.20) are
the main results of this paper. The master equation governs
the axial perturbations of a static and spherically symmetric
spacetime in vacuum HMPG. Note that in the derivation

of the master equation, we do not make the assumption that
the potential VðϕÞ must be zero. In fact, it can be seen that
the expression of the master equation does not contain
explicitly the scalar field potential. However, the inclusion
of the scalar field potential would affect the QNMs
implicitly. More precisely, changing the scalar field poten-
tial would affect the behaviors of the background space-
time, that is, the metric functions F and G, as well as the
scalar field ϕ. Therefore, the QNMs would be altered
as well.
Moreover, if we assume that the scalar field is simply a

constant, namely, the dynamics of the scalar field is turned
off, the metric functions F and G would reduce to those of
the Schwarzschild-(A)dS metric, in which the effective
cosmological constant is determined by the value of the
scalar field potential. Also, the effective potential (4.20)
would reduce to its GR counterpart and the master equation
reduces to the well-known Regge-Wheeler equation.
In Fig. 1, we assume some values of ϕ0 and present the

effective potential (4.20) as a function of ξ ¼ 1=r. The
values of u at the asymptotic region is approximated by ϕ0

times a very small constant, say, 10−11, as we have
mentioned at the end of Sec. III. One can see that the
potential vanishes at two points, one is at the spatial infinity
(ξ → 0) and the other is at the event horizon where ξ can
vary around unity, depending on the values of ϕ0.
Essentially, having a positive (negative) ϕ0 would effec-
tively suppress (enhance) the gravitational field around a
local gravitating object [see the effective gravitational
constant given by Eq. (2.22) and the effective energy-
momentum tensor (2.16)]. In this sense, the radius of
the event horizon would be smaller (larger) than the
Schwarzschild counterpart. This is consistent with the
results in Ref. [27]. For calculating the QNM frequencies,
we only need to consider the exterior spacetime, that is, the
spacetime region from the event horizon up to spatial
infinity. This corresponds to the domain of ξ where Vg ≥ 0

and we have only focused on this region of ξ in Fig. 1. Note

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0
Vg

0 0.2

0 0.1

0 0

0 0.1

0 0.2

FIG. 1. The effective potential Vg given by Eq. (4.20) as a
function of ξ. The black dashed curve shows the Regge-Wheeler
potential for the Schwarzschild black hole. The colored curves
show how the values of ϕ0 alter the shape and height of the
effective potential.

6Although in this paper, the master equation (4.19) is derived
within the scalar-tensor representation, it can also be derived
directly by using Eqs. (2.9), (2.10), and (2.11).
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that we have rescaled all the quantities by assuming
2M ¼ 1. The black dashed curve in Fig. 1 represents the
Regge-Wheeler potential for the Schwarzschild black hole,
in which ϕ0 ¼ u ¼ 0.

C. QNM frequencies

The master equation (4.19) with the potential given by
Eq. (4.20) describes the axial perturbations of a static and
spherically symmetric black hole in HMPG. In order to
compute the QNM frequencies, the master equation should
be treated as an eigenvalue problem with appropriate
boundary conditions. For an asymptotically flat and isolated
black hole, the boundary conditions subject to the system are
that only outgoing waves appear at spatial infinity and there
are only ingoing waves moving toward the black hole at the
event horizon. Generally speaking, the QNM frequencies of
a black hole are discrete and complex-valued. In this paper,
wewill use a semianalytical approach, which is based on the
WKB approximation, to calculate the QNM frequencies.
The WKB method for calculating QNM frequencies was

first formulated in the seminal paper [61] and was then
improved to higher orders in Refs. [62–66] (see Ref. [55]
for the recent review about the WKB method). The
advantage of theWKBmethod is that the QNM frequencies
can be directly evaluated using a simple formula, as long as
the effective potential in the master equation is provided.
Although the WKB method is merely a semianalytic
approach, it is proven to be accurate when the multipole
number l is larger than the overtone n [6]. This happens to
be propitious from the astrophysical point of view in the
sense that the fundamental QNMs with n ¼ 0 typically
decay more slowly, hence they are more detectable than
other overtones. Moreover, for a merger event of a binary
black hole system, the modes with l ¼ 2 or l ¼ 3 have
larger magnitudes, compared with other high-l modes.
Therefore, in this paper we will focus on the fundamental
modes with l ¼ 2 and l ¼ 3.
We use the 6th order WKB method in which the QNM

frequencies can be obtained from the following formula [63]

iðω2 − VgmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

gm

q −
X6
i¼2

Λi ¼ nþ 1

2
; ð4:21Þ

where Vgm is the maximum value of the potential Vg, and

Vð2Þ
gm is the second derivative of Vg with respect to r�

evaluated at the potential maximum. The constant coef-
ficients Λi are related to higher order WKB corrections and
they are given in Refs. [62,63].
In the upper panel of Fig. 2, we consider the fundamental

modes and show the ratio between the real part of the QNM
frequencies for the HMPG black holes and that of the
Schwarzschild black hole ωs. The imaginary part of
the QNMs are shown in the lower panel. In both panels,
the green and the dotted red curves represent the results of

l ¼ 2 and l ¼ 3, respectively. It can be seen that the results
(the changes with respect to ωs) corresponding to these two
multipole numbers are nearly identical in the chosen range
of the asymptotic scalar field ϕ0, which is required to be
small subject to the post-Newtonian constraints.
According to Fig. 2, one can see that both the real part

and the absolute value of the imaginary part of the QNM
frequencies would increase when ϕ0 increases. Also, when
ϕ0 ¼ 0, the frequency reduces to that of the Schwarzschild
black hole. This is expected because we have assumed that
the asymptotic value of u is proportional to ϕ0 (times a very
tiny constant). When ϕ0 ¼ 0, the asymptotic value of u
vanishes and the dynamics of the scalar field is turned off.
Note also that the potential Vg in the master equation
reduces to the standard Regge-Wheeler potential when
ϕ0 ¼ 0 (see the black dashed curve in Fig. 1).

V. CONCLUSIONS

The HMPG theory can be regarded as a combination of
the metric-fðRÞ gravity and the Palatini-fðRÞ gravity.

0.2 0.1 0.1 0.2 0

0.90

0.95

1.00

1.05
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Re Re s

0.19999 0.199995 0.2
1.12505

1.12506

0.2 0.1 0.1 0.2 0

0.90

0.95

1.00

1.05
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0.19999 0.199995 0.2
1.12501

1.12502

FIG. 2. The real part (upper) and the imaginary part (lower) of the
fundamental QNM frequencies are presented with respect to ϕ0.
The green and the dotted red curves represent the results of l ¼ 2
and l ¼ 3, respectively. Note that in this figure, we consider the
frequency ratio associated with the Schwarzschild black hole. The
subfigures show the detailed behavior of the curves near ϕ0 ≈ 0.2,
where the difference between the red and green lines is expected to
be maximized. The relative difference between the two lines is of
the order of 10−6 ð10−7Þ for the real (imaginary) part.
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When written in its scalar-tensor representation, it can be
shown that the scalar field is dynamical and the theory is
able to describe the late-time acceleration of the universe.
In addition, the theory can pass the local experimental tests
at the Solar System scale without invoking any screening
mechanism. Such mechanism is commonly required in
many modified theories of gravity with infrared correc-
tions, such as the metric-fðRÞ gravity. Also, unlike the
Palatini-fðRÞ gravity, the HMPG theory does not suffer
from the microscopic instabilities, which appear due to
unwanted nontrivial matter-curvature couplings.
In the presence of the dynamical scalar field, the vacuum

black hole solutions in the HMPG theory could differ from
their GR counterparts and provide us with an opportunity to
distinguish them by investigating their QNM spectra. In
this paper, we focus on the axial gravitational perturbations
and derive the master equation governing the perturbations.
The master equation is obtained by using the tetrad
formalism and it can be written as a single differential
equation in a Schrödinger-like form, indicating that the
axial gravitational perturbations do not couple with the
additional degree of freedom. However, the dynamical
scalar field which appears at the unperturbed level would
affect the master equation and change the QNM spectra.
According to the post-Newtonian constraints, the value of
the scalar field at the asymptotic region, namely, ϕ0, is
required to be very small. In the investigation of the black
holes and their QNMs, we take these constraints into
account and see how the QNM frequencies deviate from
those of the Schwarzschild black hole in the observatio-
nally consistent range of parameter space. We find that, in
the range of the parameter space under consideration,
increasing the value of ϕ0 would increase the real part
and the absolute value of the imaginary part of the QNM
frequencies.
Typically, the gravitational perturbations of a black hole

consist of the axial modes and the polar modes. For the
Schwarzschild black hole in GR, the isospectrality between
these twomodes, i.e., the polar and the axial modes share the
identical spectrum, is a very unique feature. Any evidence of

the isospectrality breaking for a Schwarzschild black hole
would be a smoking-gun of going beyond GR. For the
HMPG theory, as can be seen from Eq. (4.19), the master
equation for the axial modes is source-free and it does not
couple to the scalar mode corresponding to the dynamical
scalar field. Furthermore, when the dynamics of the scalar
field ϕ at the background level is turned off, the Regge-
Wheeler equation is recovered. As for the polar modes,
although a thorough scrutiny is beyond the scope of the
present paper and is going to be carried out elsewhere, it can
be expected that the additional scalar mode would couple to
the polarmodes by sourcing themaster equation of the latter.
The source term is expected to be present even though the
scalar field at the background level is nondynamical. In
particular, when one considers the gravitational perturba-
tions of a Schwarzschild black hole in HMPG, the isospec-
trality between the polar modes and the axial modes would
be broken because the additional source term in the polar
sector would drive new perturbation modes [67]. Another
theoretical example for the breaking of isospectrality is the
metric-fðRÞ gravity [68–70]. Essentially, by examining the
way how the isospectrality is broken in HMPG and
comparing it with those in other gravitational theories,
one can use it as a promising tool, in addition to the direct
comparison of the QNM spectra, to test various theoretical
models. We leave these issues to our future investigations.
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