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The Deser-Woodard (DW) nonlocal gravity model has been proposed in order to describe the late-time 
acceleration of the universe without introducing dark energy. In this paper we focus, however, on the 
early stage of the universe and demonstrate how a primordial bounce in the vacuum spacetime can be 
realized in the framework of the DW nonlocal model. We reconstruct the nonlocal distortion function, 
which encodes all the modifications to the Einstein-Hilbert action, in order to generate bouncing solutions 
to solve the initial singularity problem. We show that the initial conditions can be chosen in such a way 
that the distortion function and its first order derivative approach zero after the bounce and the standard 
cosmological solution described by general relativity is recovered afterwards. We also study the evolution 
of anisotropies near the bounce. It turns out that the shear density defined by the anisotropy grows 
towards the bounce, but due to the presence of nonlocal effects, it grows in a milder manner compared 
with that in Einstein gravity.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the fundamental problems in Einstein’s general relativ-
ity (GR) is the existence of spacetime singularities associated with 
the energy conditions for matter fields. The definition of space-
time singularities in the notion of geodesic incompleteness in GR 
has been established by Hawking and Penrose [1]. In the standard 
big bang cosmology, the universe started with a big bang singu-
larity, at which the spacetime curvature diverges, jeopardizing the 
applicability of GR at the initial time.

It has been suggested that the big bang singularity can be re-
placed by a nonsingular bouncing scenario in which all curvature 
invariants become finite. In fact, such bouncing cosmologies have 
been realized in the context of loop quantum cosmology [2,3] and 
string theory [4]. In practice, one can either construct bouncing 
solutions within the framework of GR by introducing matter fields 
which violate null energy conditions [5–7], or modify GR such that 
bouncing solutions can be obtained without violating any energy 
conditions [8–17]. See Ref. [18] and the references therein for a 
review.
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A nonlocal addition to GR is motivated by the fact that quan-
tum loops of massless particles such as gravitons inevitably give 
rise to nonlocal quantum corrections, see for example [19]. It has 
been noted that a nonlocal quantum effective action might be 
obtained from a fundamental local Lagrangian through the gravita-
tional vacuum polarization of infrared gravitons [20,21]. However, 
such a derivation from first principles is not yet available, there-
fore a compromised approach has been to construct a nonlocal 
effective action with an aim to describe phenomena that cannot be 
explained by GR with ordinary matter. Nonlocal models replacing 
dark matter, sometimes called the nonlocal metric realization of 
MOND (MOdified Newtonian Dynamics), have also been proposed 
and studied in Ref. [22–28]. For the nonlocal models that attempt 
to explain inflation, see Refs. [29–34].

So far the most popular application of nonlocal gravity has been 
the late-time cosmic acceleration without dark energy [35–44]. 
Among such models, the two most studied are the Deser-Woodard 
(DW) model [36], which distorts the Ricci scalar R by a function 
of the nonlocal dimensionless scalar �−1 R , and the Maggiore-
Mancarella (MM) model [41], which introduces a mass parame-
ter m2 multiplied by the dimensionful nonlocal scalar �−2 R . For 
the DW model, cosmological perturbations and structure forma-
tion have been studied in Refs. [46–51]. The issues concerning 
causality, localization, degrees of freedom and stability [52–56], 
and the gravitational energy-momentum flux due to an isolated 
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system [57] have been also discussed. The phenomenology of the 
MM model has also been extensively studied [58–65].

However, a very recent analysis using the constraint from Lunar 
Laser Ranging has ruled out both the DW and MM models [66]. 
For the case of the DW model, this is essentially because the as-
sumption that the nonlocal scalar has opposite signs (�−1 R < 0
for the cosmological scales and �−1 R > 0 for the solar system 
scales) turns out to be wrong. It was shown that �−1 R remains 
negative inside gravitationally bound systems because of an in-
tegration constant required in this case [66]. Deser and Woodard 
have proposed an improved model based on another dimensionless 
nonlocal scalar made out of �−1 R [67]. While waiting for more de-
tailed analyses for the new DW model, in this paper we consider a 
completely different application of the original DW model, namely 
the primordial bouncing cosmology.

The rest of this paper is organized as follows. In Section 2, we 
review the action and equations of motion for the DW model. 
Section 3 newly determines the nonlocal distortion function by 
requiring bouncing solutions in the beginning of the universe. Sec-
tion 4 investigates the evolution of anisotropies near the bounce. 
Section 5 draws our conclusions and discussions.

2. The Deser-Woodard nonlocal gravity

We start with the action of the DW nonlocal gravity model as 
follows [36]:

S = 1

16π

∫
d4x

√−g R
[
1 + f

(�−1 R
)] + Sm , (1)

where Sm stands for the matter action. Here f is an arbitrary func-
tion of the inverse scalar d’Alembertian acting on the Ricci scalar 
R . This function f , called the nonlocal distortion function, adds 
nonlocal modifications to the Einstein-Hilbert action. Note that we 
have assumed c = G = 1 in this paper.

The nonlocal action (1) can be localized by introducing an aux-
iliary scalar field

�−1 R ≡ φ , (2)

and a Lagrange multiplier ξ [52]. The action (1) then can be rewrit-
ten as

S = 1

16π

∫
d4x

√−g [R (1 + f (φ)) + ξ (�φ − R)] + Sm

= 1

16π

∫
d4x

√−g
[

R (1 + f ) − ∂μξ∂μφ − ξ R
] + Sm , (3)

where the second equality is deduced with an integration by part.
The equations of motion can be derived by varying the action 

(3) with respect to ξ , φ, and the metric gμν . Varying the action 
with respect to the Lagrange multiplier ξ leads to

�φ = 1√−g
∂μ

(√−g∂μφ
) = R . (4)

The variation with respect to the auxiliary scalar field φ gives

�ξ = −R
df

dφ
. (5)

Finally, varying the action with respect to the metric gμν leads to 
the modified Einstein field equation

Gμν + �Gμν = 8π Tμν , (6)

where
�Gμν = (
Gμν + gμν� − ∇μ∇ν

)
( f − ξ)

+ 1

2
gμν∂ρξ∂ρφ − ∂(μξ∂ν)φ , (7)

where Gμν and Tμν stand for the Einstein tensor and the energy 
momentum tensor, respectively.

It can be noted from the field equation (6) that all the non-
local modifications are encoded in the correction term �Gμν . In 
the original context, the function f was determined by requiring 
to generate the late-time acceleration of the universe without in-
troducing dark energy in the matter sector [68]. See also [69,70]
for the reconstruction procedures of f for alternative cosmologi-
cal evolutions. In the next section, we will instead reconstruct the 
function f by requiring a bouncing solution in the very early uni-
verse. We will demonstrate that a primordial bouncing cosmology 
can be realized in the DW nonlocal gravity.

3. Bouncing cosmology

In order to construct a primordial bouncing solution, we con-
sider a homogeneous, isotropic, and spatially flat universe which 
can be described by the flat Friedmann-Lemaître-Robertson-Walker 
(FLRW) metric. The line element reads

ds2 = −dt2 + a(t)2dxidxi , (8)

where the scale factor a(t) is a function of cosmic time t . If we 
assume that the energy momentum tensor is governed by a perfect 
fluid with energy density ρ and pressure p, the (0, 0) and (i, j)
components of the field equation (6) can be written as

3H2 (1 + f − ξ) + 3H
(

ḟ − ξ̇
)

− 1

2
ξ̇ φ̇ = 8πρ , (9)(

3H2 + 2Ḣ
)

(1 + f − ξ) + 1

2
ξ̇ φ̇

+
(

d2

dt2
+ 2H

d

dt

)
( f − ξ) + 8π p = 0 , (10)

where the dot denotes d/dt and H ≡ ȧ/a is the Hubble function. 
Eliminating ξ̇ φ̇ terms, one can combine Eqs. (9) and (10) to get 
[68]

F̈ + 5H Ḟ +
(

6H2 + 2Ḣ
)

(1 + F ) = 8π (ρ − p) , (11)

where F ≡ f − ξ . For any given cosmological evolution a(t), one 
can in principle reconstruct the distortion function f according to 
Eq. (11).

Within the FLRW spacetime (8), the equations for scalar fields 
φ and ξ , Eqs. (4) and (5), can be written as

φ̈ + 3Hφ̇ + 6
(

Ḣ + 2H2
)

= 0 , (12)

ξ̈ + 3H ξ̇ − 6
(

Ḣ + 2H2
) df

dφ
= 0 , (13)

respectively.

3.1. The primordial bounce

We assume that the expansion of the universe started with a 
primordial bounce. For the simplest bouncing solution, we suppose 
that the scale factor a(t) can be written as

a(t) = abeh1t2/2 , H(t) = h1t , (14)

where ab is the minimum size of the scale factor at the bounce, 
and h1 is a positive constant. We will focus on the positive branch 
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of the cosmic time since only the expanding phase of the universe 
with a positive Hubble function will be considered in this work. 
See Refs. [11,12] for the investigation of bouncing solutions in dif-
ferent classes of nonlocal gravity models.

It should be emphasized that a general bouncing solution is not 
necessarily in the form of Eq. (14). However, without loss of gen-
erality, the scale factor of most physical bouncing solutions can be 
approximated as

a(t) ≈ ab

(
1 + h1

2
t2

)
, H(t) ≈ h1t . (15)

Therefore, we will assume a Hubble function linear in time to char-
acterize the bouncing solution in this paper.

Furthermore, we shall consider a primordial bounce occurring 
at the very early universe prior to the reheating epoch. Since the 
bouncing solution is introduced to replace the big bang singular-
ity, the epoch that we consider here for the cosmological solu-
tion should be even before the inflationary phase. In this respect, 
the spacetime can be effectively regarded as a vacuum universe 
(Tμν = 0). Inserting Eq. (14) into Eqs. (11), (12), and (13), we get

F ′′ + 5τ F ′ + 2
(

1 + 3τ 2
)

(1 + F ) = 0 , (16)

φ′′ + 3τφ′ + 6
(

1 + 2τ 2
)

= 0 , (17)

ξ ′′ + 3τξ ′ − 6
(

1 + 2τ 2
) df

dφ
= 0 . (18)

Note that we have introduced a dimensionless time variable τ ≡√
h1t for the sake of convenience. In the above equations, the 

prime denotes d/dτ . The exact solutions to Eqs. (16) and (17) read

F (τ ) = e−τ 2
[

A1 + A2 erf

(
τ√

2

)]
− 1 , (19)

φ(τ ) = B1 + B2 erf

(√
3

2
τ

)

−
[

2 + 2 F2

(
1,1; 3

2
,2;−3τ 2

2

)]
τ 2 , (20)

where A1, A2, B1, and B2 are integration constants, and erf(x) and 
p Fq(...) are the error function and the generalized hypergeometric 
function, respectively. From Eq. (20), we can derive

φ′ =
√

6

π
B2e−3τ 2/2 − 4τ −

√
2π

3
e−3τ 2/2erfi

(√
3

2
τ

)
, (21)

where erfi(x) is the imaginary error function. We assume B2 ≤ 0
such that φ′ ≤ 0 for τ ≥ 0. The reason of making this assumption 
will be clearer later when initial conditions are imposed.

To reconstruct the distortion function f = F + ξ , we need to 
find ξ(τ ). Therefore, we numerically solve Eq. (9)

ξ ′φ′ = 6τ 2 (1 + F ) + 6τ F ′ , (22)

which turns out to be a first order differential equation of ξ(τ ). 
After obtaining ξ(τ ), we can use f (τ ) = F (τ ) + ξ(τ ) and φ(τ ) to 
get f (φ), completing the reconstruction of the distortion function.

3.2. Initial conditions

In Ref. [68], the distortion function generating the 
CDM cos-
mology is fitted into

f (φ) = 0.245
[

tanh
(

0.35Y + 0.032Y 2 + 0.003Y 3
)

− 1
]

, (23)
Fig. 1. The distortion function f = F + ξ as a function of φ is shown. Here we 
fix B2 = −0.1 and A1 = 1. The black, blue, and red curves correspond to A2 =
2, A2 = 1, and A2 = 0, respectively. The initial condition ξ = 0.999 is chosen at 
τi = 5. The bounce takes place at φ ≈ 50 where the distortion function deviates 
significantly from zero. As time goes on, the field φ decreases and the distortion 
function approaches zero.

where Y ≡ φ + 16.5. The auxiliary scalar field φ is negative in the 

CDM cosmology. Also, from the qualitative behavior of f (φ) pre-
sented in Ref. [68], one can see that φ′ is always negative, hence φ
decreases in time.

We will assume φ′ ≤ 0 in our bouncing solutions, and that is 
why we required B2 ≤ 0 in the previous subsection. In addition, we 
demand that at a certain time τi in the early universe (while τi is 
still far away from the bounce), the distortion function satisfies the 
following two conditions: f � 0 and df /dφ � 0. We also require 
that φ(τi) = 0 by fixing the integration constant B1 properly. In 
this regard, the bounce (τ = 0) would take place with a positive φ. 
See Figs. 1, 2, and 3 in the next subsection.

The first condition f � 0 can be achieved by fixing the integra-
tion constant ξ(τi) when solving Eq. (22). More precisely, we can 
choose the value of ξ(τi) such that f (τi) = F (τi) +ξ(τi) � 0. Notice 
that F (τ ) → −1 when τ � 1.

In order to reconcile the solution with the second condition 
df /dφ � 0, we calculate df /dφ = f ′/φ′ according to Eqs. (19), (20), 
and (22). When τ � 1, the result can be approximated as

df

dφ
≈ 1

8
(A1 + A2) e−τ 2

. (24)

Therefore, as long as A1 + A2 > 0, the second condition df /dφ � 0
can be satisfied at τi .

3.3. Reconstruction of f (φ)

After imposing appropriate initial conditions mentioned in the 
previous subsection, we obtain the distortion function f (φ) nu-
merically and present the results in Figs. 1, 2, and 3.

In Fig. 1, we fix A1 and B2, and show the distortion function 
with different values of A2. In Fig. 2, on the other hand, we fix 
A2 and B2. The distortion functions with different values of A1
are exhibited. Finally, we fix A1 and A2, and see how the distor-
tion function changes when B2 varies. According to these figures, 
it can be seen that the distortion function in each case approaches 
zero as τ increases (φ decreases). It deviates from zero near the 
bounce when τ → 0. It is therefore shown that by choosing the 
integration constants properly, the value of f (φ) and its derivative 
df /dφ approach zero after the bounce. This means that the distor-
tion function of our model could be smoothly connected to that 
describing the standard 
CDM cosmology.

4. Evolution of anisotropies

In several bouncing scenarios, the anisotropy would grow as 
a−6 towards the bounce hence cannot be neglected [71–73]. In 
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Fig. 2. The distortion function f = F + ξ as a function of φ is shown. Here we 
fix B2 = −0.1 and A2 = 1. The black, blue, and red curves correspond to A1 =
2, A1 = 1, and A1 = 0, respectively. The initial condition ξ = 0.999 is chosen at 
τi = 5. The bounce takes place at φ ≈ 50 where the distortion function deviates 
significantly from zero. As time goes on, the field φ decreases and the distortion 
function approaches zero.

Fig. 3. The distortion function f = F + ξ as a function of φ is shown. Here we fix 
A1 = A2 = 1. The black, blue, and red curves correspond to B2 = −0.1, B2 = −1, 
and B2 = −2, respectively. The initial condition ξ = 0.999 is chosen at τi = 5. The 
bounce takes place at φ ≈ 50 where the distortion function deviates significantly 
from zero. As time goes on, the field φ decreases and the distortion function ap-
proaches zero.

this section, we will investigate how the anisotropy evolves near 
the bounce in the DW model. Considering a metric of the Bianchi 
I type

ds2 = −dt2 + a(t)2
[

e2βx(t)dx2 + e2βy(t)dy2 + e2βz(t)dz2
]

, (25)

where the shear βi satisfies the condition 
∑

i βi = 0, the field 
equation (6) gives(

3H2 − σ
)

(1 + F ) + 3H Ḟ − 1

2
ξ̇ φ̇ = 8πρ , (26)

−
(

12H2 + 6Ḣ + 2σ
)

(1 + F ) − 3 F̈ − 9H Ḟ − ξ̇ φ̇

=8π(−ρ + 3p) , (27)

where σ ≡ ∑
i β̇

2
i /2 stands for the shear density of anisotropies. 

After eliminating ξ̇ φ̇ terms, Eq. (11) is recovered. Therefore, the 
solution for F (τ ) given in Eq. (19) is still valid after including 
anisotropies when the bouncing ansatz (14) is considered.

Most importantly, if we use Eqs. (26), (27), and the two scalar 
field equations (4) and (5), we obtain

σ̇ +
(

6H + 2 Ḟ

1 + F

)
σ = 0 , (28)

which can be solved to get σ ∝ (1 + F )−2a−6. In GR ( Ḟ = 0), the 
shear density grows as σ ∝ a−6 towards the bounce. In the DW 
gravity, however, the presence of nonlocal terms tends to suppress 
the growth of the shear density. According to Eqs. (14) and (19), 
the function F can be estimated as F ≈ a−2 near the bounce as 
long as A1 is not zero. In this regard, the shear density in the DW 
bouncing model still grows, but in a milder way, i.e., σ ∝ a−2.

5. Conclusions

We have considered primordial bouncing cosmology in the 
framework of the Deser-Woodard nonlocal gravity model. In the 
presence of the nonlocal modifications encoded in the distortion 
function f , the big bang singularity can be replaced with a bounc-
ing scenario by including a distortion function appropriately. In 
this regard, the curvature of the spacetime remains finite and the 
curvature singularity is removed. The bouncing solution is sup-
ported by the nonlocal correction terms in the gravitational action 
in the sense that the null convergence condition is violated while 
the null energy condition of the standard energy-momentum ten-
sor is not necessarily violated. In addition, we have shown that 
the growth of anisotropies towards the bounce is suppressed by 
the nonlocal effects (σ ∝ a−2). Actually, according to the pertur-
bation equations for vector modes and tensor modes [45,51], it 
can be proven that the vector modes and tensor modes are lin-
early stable at the bounce as long as A1 = 0. The three sets of 
bouncing solutions corresponding to the different reconstructions 
of the distortion function f are presented in Figs. 1, 2, and 3. In 
each case, the initial conditions are chosen such that the distor-
tion function and its first order derivative approach zero after the 
bounce and hence there is no modification to the Einstein-Hilbert 
action afterwards. This construction is in contrast to the original 
determination of f in order to generate the late-time accelera-
tion [68]. Given that the original DW model [36] as a solution for 
the late-time acceleration without dark energy is ruled out by the 
solar system constraints [66], it may be instead considered as a 
bouncing cosmology model to solve the initial singularity problem. 
It would be also interesting to see if bouncing solutions are possi-
ble in the new DW model [67].

Although the reconstruction in this work is performed in a vac-
uum spacetime, the inclusion of normal matter, such as radiation, 
should not change our conclusion. Firstly, we consider a regime 
which is still far away from the bounce such that the standard 
Friedmann equation H2 ∝ ρ is still valid. Since F grows as a−2

towards the bounce according to the estimate in Section 4, the ap-
pearance of nonlocal effects will modify the Friedmann equation 
through the H2 F term, which grows faster than normal matter 
(see Eq. (10)). Hence, the nonlocal modifications will eventually 
dominate the normal matter field. Secondly, despite the normal 
matter field grows towards the bounce, its quantity acquires a 
maximum value when a = ab . The shear density σ grows even 
slower than radiation and pressureless particles. Therefore, they 
can be regarded as inhomogeneous terms in the differential equa-
tions, e.g., Eq. (11). A particular solution for the differential equa-
tions turns out to be sub-dominant compared with the homoge-
neous solutions. Moreover, with the field equations and the bounc-
ing ansatz, the distortion function can always be reconstructed 
by solving the corresponding differential equations. Therefore, this 
conclusion is not expected to change in the presence of normal 
matter fields.
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