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It is known that barotropic FRW equations written in the conformal time variable can be reduced 
to simple linear equations for an exponential function involving the conformal Hubble rate. Here, 
we show that an interesting class of barotropic universes can be obtained in the linear limit of a 
special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from 
Chiellini’s integrability condition. These cosmologies, which evolutionary are similar to the standard ones, 
correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes 
of the scale factors inverse proportional to the adiabatic index.

© 2015 Elsevier B.V. All rights reserved.
1. The FRW barotropic oscillator

In conformal time η, the scale factors of the FRW barotropic 
universes, a(η), assuming normalized-to-unit amplitude, have the 
following simple expressions

a−(η) = [
sinh γ̄ (η − η0)

] 1
γ̄ , κ = −1,

a0(η) = (η − η0)
1
γ̄ , κ = 0,

a+(η) = [
cos γ̄ (η − η0)

] 1
γ̄ , κ = +1, (1)

where γ̄ = 3γ /2 − 1 with γ the adiabatic index, and η0 an ar-
bitrary constant. The case γ̄ = 0 should be treated separately and 
does not enter the considerations in the following. The scale fac-
tors in (1) correspond to the three cases of the curvature index κ , 
i.e., κ = −1 for an open universe, κ = 0 for a flat universe, and 
κ = 1 for a closed universe, and have entered textbooks since 
several decades [1–3]. They can be obtained by integrating the fol-
lowing second order nonlinear differential equation in conformal 
time η (′ = d/dη)

aa′′ + (γ̄ − 1)a′ 2 + κγ̄ a2 = 0, (2)

which is obtained from the comoving Einstein–Friedmann dynami-
cal equations after performing the change dt = adη from comoving 
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to conformal time, and making usage of the barotropic equation of 
state p = (γ − 1)ρ .

Furthermore, by using H = a′/a, where H is the Hubble pa-
rameter in conformal time, one can transform (2) to the Riccati 
equation

H′ + γ̄H2 + κγ̄ = 0, (3)

which for κ = 1 corresponds to a harmonic oscillator of fre-
quency γ̄ , while for κ = −1 corresponds to a hyperbolic oscillator. 
The reduction of the barotropic FRW equations to these simple os-
cillator systems has been first obtained by Barrow [4,5] and later 
the Riccati approach for cosmological barotropic fluids in confor-
mal time has been pursued by several authors [6–11]. Recently, 
the Riccati framework has been developed for scalar field FRW cos-
mologies by Harko et al. [12], while El-Nabulsi obtained a Riccati 
equation for the ‘generalized time-dependent Hubble parameter’ 
H g(t) = �(α)t1−α H(t), where �(α) is the Euler Gamma function 
and α is an arbitrary real number. Notice that α = 1 corresponds 
to the standard FRW cosmology [13,14]. In fact, by introducing 
the modified Hubble parameter in conformal time Hu(η) = u′/γ̄ u
[6–11], the Riccati equation (3) can be reduced to the linear sec-
ond order equation

u′′ + κγ̄ 2u = 0, (4)

from which the set (1) of scale factors are immediately obtained 
through a(η) = [u(η)]1/γ̄ . Although the FRW barotropic models 
look more as pedagogical examples, they are of considerable in-
terest at the forefront of cosmology as several barotropic classes of 
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fluids have been proposed in recent years as models for the enig-
matic dark energy component of the universe [15].

In this Letter, we will use the feature that the powers of order 
γ̄ of the scale factors, i.e., the u functions, are the solutions of the 
simple differential equation (4), to make connections with another 
well-known equation in mathematical physics which in this way 
can be introduced in the barotropic cosmological context. This is 
the Ermakov–Pinney (EP) equation with inverse cubic nonlinearity 
which have long been known to have profound connections with 
the linear equations of identical operatorial form, and because of 
this it has been considered as an example of ‘nonlinearity from 
linearity’ [16]. Previously, some EP equations have found their way 
in different cosmological setups [17–21], but not in the barotropic 
FRW cases. Here, we will introduce non-standard barotropic cos-
mologies that are based on a modified form of Eq. (4) obtained 
from the linear limit of the EP equations with an additional non-
linear dissipation term of the Chiellini type [22].

2. The FRW barotropic cosmologies based on Ermakov–Pinney 
solutions

2.1. The non-dissipative case

The EP equations that corresponds to the cosmological baro-
tropic oscillator (4) are

v ′′ + κγ̄ 2 v + kv−3 = 0, (5)

where k is an arbitrary negative real constant which defines the 
strength of the inverse cubic nonlinearity. For k = 0, one recovers 
the linear equation (4). For arguments in the following, it is also 
convenient to write (5) in the form

v ′′ + h(v) = 0, h(v) = κγ̄ 2 v + kv−3. (6)

The particular solutions of the EP equation are given by (see 
also [23])

v−(η;k) =
√

−1 +
(

1 − k

γ̄ 2

)
cosh2 γ̄ (η − η0), κ = −1,

v0(η;k) =
√

(η − η0)2 − k, κ = 0,

v+(η;k) =
√

1 −
(

1 + k

γ̄ 2

)
sin2 γ̄ (η − η0), κ = 1, (7)

if one makes usage of the Pinney superposition formula [24]

v(η;k) =
√

u2
1 − ku2

2

W 2
, (8)

where W = γ̄ is the Wronskian of the two linearly independent 
solutions u1 and u2 of (4).

On the other hand, we can use the inverse relationship u =
f (v), as discussed by Steen [25] and Milne [26], to make contact 
with the barotropic FRW cosmologies in conformal time

u(η) = lim
k→0

v(η;k) cos

(√
−k

η∫
dη

v2
+ ϕ

)
,

ϕ – an arbitrary phase, (9)

where the integrals of the type 
∫ η
η0

dη
v2 are known as Milne phases 

and are used in eigenvalue problems for Sturm–Liouville type dif-
ferential equations [27]. Performing explicitly the limit, one finds 
that the nonlinear constant k occurs only as an additional factor 
for the known linear solutions used to construct the scale factors. 
In the next subsection, we will show that if one works with the 
special type of Chiellini-dissipative EP equations some interesting 
physical effects can be traced out.
2.2. The Chiellini-dissipative case

We introduce now the Chiellini dissipative EP equation as an 
equation having the same h function as in (6), but with an addi-
tional damping term

ṽ ′′ + g(ṽ)ṽ ′ + h(ṽ) = 0, (10)

where the damping coefficient g(ṽ) will be given by Chiellini’s 
integrability condition for the Abel equation of the second kind 
which can be obtained from (10) by letting ṽ ′ = z(ṽ(η))

z
dz

dṽ
+ gz + h = 0. (11)

Then, in (11) we use the inverse transformation z = 1
y which turns 

it into Abel’s equation of the first kind

dy

dṽ
= g(ṽ)y2 + h(ṽ)y3. (12)

Eq. (12) is integrable if the dissipation function g(ṽ) is obtained 
from h(ṽ) by means of Chiellini’s condition

d

dṽ

(
h(ṽ)

g(ṽ)

)
= pg(ṽ), p, a real constant. (13)

In the following, we will make use of dissipation functions g that 
fulfill Chiellini’s integrability condition that we will call Chiellini 
damping.

The Chiellini-damped EP equation (10) has the interesting prop-
erty that it can be turned into the nondissipative EP equation

ṽ ′′ + h̃(ṽ) = 0, h̃(ṽ) = 2h(ṽ) (14)

having the h function scaled up by a factor of two when the 
Chiellini condition (13) is satisfied for p = −2. We further point 
out that this equivalence allows to deduce both (14) and (10) as 
equations of motion from the Lagrangian function

L
(
q,q′) = q′ 2

2
− κγ̄ 2q2 + kq−2

upon the identifications ṽ = q and ṽ ′ = p, where q′ = p. This La-
grangian, together with its corresponding Hamiltonian, are typical 
for an isotonic oscillator of potential V (q) = κγ̄ 2q2 −kq−2 describ-
ing the Newtonian motion of a particle under the action of a linear 
force, and an additional inverse cube force with respect to the ori-
gin [28].

To prove that the Chiellini-dissipative EP equation is equivalent 
to a nondissipative EP equation with a scaled h, one needs to take

ṽ ′ = h

g
(15)

in (10). Next, let us differentiate (15) with respect to η to obtain

ṽ ′′ = d

dṽ

(
h(ṽ)

g(ṽ)

)
ṽ ′ = h

g

d

dṽ

(
h(ṽ)

g(ṽ)

)
, (16)

and by Eq. (13) we obtain

ṽ ′′ = ph(ṽ) (17)

which is exactly (14) when p = −2. The remarkable feature of this 
result is that it allows us to find the dissipation g(ṽ) of (10) with-
out knowing the solution ṽ as follows.

Multiplying (14) by ṽ ′

ṽ ′ ṽ ′′ + 2h(ṽ)ṽ ′ = 0 (18)

which also can be written as
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d

dη

(
ṽ ′)2 + 4h(ṽ)

dṽ

dη
= 0 (19)

and by one integration leads to

(
ṽ ′)2 + 4

ṽ∫
h(ṽ)dṽ = c1. (20)

Thus:

ṽ ′ =

√√√√
c1 − 4

ṽ∫
h(ṽ)dṽ (21)

and now we use (15) to obtain

g(ṽ) = h(ṽ)√
c1 − 4

∫ ṽ h(ṽ)dṽ
. (22)

From (21) by one quadrature, we have

ṽ∫
dṽ√

c1 − 4
∫ ṽ h(ṽ)dṽ

= η − η0. (23)

If we define

Ih(ṽ) =
ṽ∫

dṽ√
c1 − 4

∫ ṽ h(ṽ)dṽ
(24)

then the solution to (14) is found from (23) via the inversion

ṽ = I−1
h (η − η0), (25)

where η0 depends on an initial condition. Also, the nonlinear 
equation becomes linear with g(ṽ), h(ṽ) given by

g(ṽ) = g̃
(

I−1
h (η − η0)

)
, h(ṽ) = h̃

(
I−1
h (η − η0)

)
(26)

and with solution to the linear dissipative equation

v ′′ + g̃(η)v ′ + h̃(η) = 0 (27)

given by (25).
Using h from (6) together with (22) leads to

g(ṽ) = κγ̄ 2 ṽ2 + kṽ−2√−2κγ̄ 2 ṽ4 + c1 ṽ2 + 2k
. (28)

Furthermore, from (23) one has

η − η0 =
ṽ∫

ṽdṽ√−2κγ̄ 2 ṽ4 + c1 ṽ2 + 2k
. (29)

By integration and inversion we then have the following general 
solutions of (10):

ṽ−1(η; c1,k) = 1

2|γ̄ |

√
−c1 +

√
−Δ−

k cosh
(
2
√

2γ̄ (η − η0)
)
,

Δ−
k < 0, κ = −1,

ṽ0(η; c1,k) =
√

c1(η − η0)2 − 2k

c1
, κ = 0,

ṽ1(η; c1,k) = 1

2|γ̄ |

√
c1 +

√
Δ+

k sin
(
2
√

2γ̄ (η − η0)
)
,

Δ+ > 0, κ = 1, (30)
k
where Δ−
k = 16kγ̄ 2 − c2

1, Δ+
k = 16kγ̄ 2 + c2

1. Examining this set of 
dissipative EP solutions, one can see that the differences with re-
spect to the non-dissipative case consist only in the presence of 
the new integration constant c1 and the 

√
2 scaling of γ̄ which 

leads to a different frequency of the oscillatory ripples in the 
closed universe case. However, the reduction to the linear case by 
setting k = 0 does not lead this time to the standard barotropic 
cosmologies. This reduction will be discussed in the next subsec-
tion.

2.3. The reduced Chiellini-dissipative case

At first glance, the solutions (30) do not seem to offer anything 
appealing in cosmology. However, we will show now that taking 
the limit of the nonlinear coupling constant k = 0 in (10) does not 
lead to known results as this happens in the non-dissipative case. 
By taking this limit in the flat case, one obtains the linear equation 
as before. However, in the non-flat cases the reduced equation is 
still nonlinear because the Chiellini dissipation does not vanish in 
the limit

ũ′′ + gκ (ũ)ũ′ + κγ̄ 2ũ = 0, gκ (ũ) = κγ̄ 2ũ√
c1 − 2κγ̄ 2ũ2

. (31)

This equation has the curious property that despite being nonlin-
ear, it has in the case κ = 1 the linear harmonic solutions

ũ1 =
√

c1√
2γ̄

sin
√

2γ̄ (η − η0),

ũ2 =
√

c1√
2γ̄

cos
√

2γ̄ (η − η0), (32)

as if the nonlinear dissipation does not act at all and, if judged 
according to its solutions, (31) is linear. The other curvature cases 
also have corresponding nondissipative solutions. The only feature 
introduced by the reduced nonlinear Chiellini dissipation is that 
the amplitudes of the harmonic modes are inverse proportional 
to the frequency, which in fact is an Ermakov–Pinney fingerprint. 
Thus, one can also obtain solutions of the reduced equation (31)
from the solutions (30) by taking k = 0

ũ−(η; c1) =
√

c1

2|γ̄ |
√

−1 + cosh
(
2
√

2γ̄ (η − η0)
)

κ = −1,

ũ0(η; c1) = √
c1(η − η0) κ = 0,

ũ+(η; c1) =
√

c1

2|γ̄ |
√

1 + sin
(
2
√

2γ̄ (η − η0)
)

κ = 1. (33)

Notice also that the integration constant c1 should not be zero 
since it occurs in the amplitude of the reduced harmonic modes.

Because of the close similarity with the undamped barotropic 
cosmologies and the equivalence between Eqs. (10) and (14), we 
introduce the scale factors of the Chiellini barotropic universes as 
the roots of order γ̄ of the ũ modes,

ã−(η; c1) =
( √

c1√
2|γ̄ |

) 1
γ̄ [

sinh
√

2γ̄ (η − η0)
] 1

γ̄ , κ = −1,

ã0(η; c1) = c1
1

2γ̄ (η − η0)
1
γ̄ , κ = 0,

ã+(η; c1) =
( √

c1√
2|γ̄ |

) 1
γ̄ [

sin
√

2γ̄ (η − η0)

+ cos
√

2γ̄ (η − η0)
] 1

γ̄ , κ = 1. (34)

Plots of these scale factors for dust, radiation, and vacuum 
cases are presented in Fig. 1, and of the damping functions gκ (ũ)
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Fig. 1. (Color online.) Scale factors ãκ (η; c1) according to Eqs. (34) with c1 = 1/16
for the open and closed FRW cosmologies, and c1 = 5/4 for the flat one, respectively 
(continuous lines), as compared with the standard scale factors (dashed lines) from 
Eqs. (1) for dust (blue), radiation (red), and vacuum (green) barotropic fluids.

in Fig. 2. Despite the presence of the Chiellini damping function, 
the scale factors of these damped barotropic universes are func-
tionally similar to the standard scale factors of the nondissipative 
cosmologies. In the flat case, the reduced EP cosmology can be 
Fig. 2. (Color online.) Reduced Chiellini dissipations gκ (η; c1) with c1 = 1/16 for 
the open and closed FRW cosmologies, respectively, and the same barotropic fluids 
as in the previous figure. In the open cosmology case, the Chiellini dissipations for 
radiation (red continuous line) and vacuum (green long-dashed line) are identical 
functions of the conformal time. For the flat case, the Chiellini dissipation g0(η; c1)

is not drawn because it is always naught.

matched exactly to the standard cosmology by choosing c1 = 1. In 
the non-flat cases, the differences occur in the amplitudes of the 
scale factors which are inverse proportional with the adiabatic pa-
rameter γ̄ and in the rescaling of the argument of the hyperbolic 
and trigonometric functions. The similarity of the scale factors is 
due to the behavior of the Chiellini damping. As one can see in 
Fig. 2, in the case of open universes the reduced Chiellini damp-
ing is negative, i.e., it is actually a gain function, and goes rapidly 
to a small negative plateau. For the closed universes, the function 
g−1(η) may have damping regions but also periods in which it is 
purely imaginary.

In Fig. 3, we plot the deceleration parameter q̃(η) = 1 − ã′′ã/ã′ 2

in the reduced EP case for the same three main barotropic cos-
mologies at each of the three curvature indices and compare with 
the standard ones. This is the basic parameter by which the oc-
currence of accelerating and decelerating cosmological epochs can 
be determined. There is no difference in the flat case with respect 
to the standard flat cosmology, and minor changes in shape in the 
non-flat cases. The energy density is plotted in Fig. 4, according to 
the expression

ρ̃(η) = 3

2

ã′ 2 + κã2

ã4
, 4πG = 1, (35)

which is positive in all cases and display in general shifted values 
with respect to the standard cases that depend on the constant 
c1 and the rescaled conformal time. The energy density of the 
reduced EP closed cosmology in the vacuum case shows an os-
cillatory behavior but the positivity of the energy density is main-
tained.

Taking into account these results indicating that the reduced 
EP barotropic cosmologies are physical, we conjecture that they 
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Fig. 3. (Color online.) Chiellini-damped deceleration parameters q̃κ (η; c1) with c1 =
1/16 in the reduced EP case for radiation-dominated (red, γ̄ = 1) and matter-
dominated (blue, γ̄ = 1

2 ) FRW universes as given by (34). The initial phases have 
been chosen as naught in the first two cases and η0 = π/3 in the radiation- and 
matter-dominated closed universes. For the flat case in the middle, the reduced de-
celeration parameters are identical to the standard ones.

can be used as nonflat, either open or closed, barotropic models of 
the dark energy affording for accelerating late epochs because of 
the negative dissipation/gain of the Chiellini type. In such a frame-
work, this dissipation is an apparent feature of the dynamics of 
the Universe because it is generated by the nondissipative cosmol-
ogy of a barotropic fluid perceived as dark energy by the comoving 
observers.

3. Conclusion

A class of dissipative Ermakov–Pinney equations with nonlin-
ear dissipation of the Chiellini type is introduced in the frame-
work of barotropic FRW cosmologies. When the nonlinear cou-
pling constant is set to naught, the obtained damped equations 
provide scale factors of the non-flat universes that are similar to 
those of the standard barotropic cosmologies, while in the flat 
case, the scale factor can be made identical to the standard one 
by calibration. Other cosmological functions, such as the energy 
Fig. 4. (Color online.) Energy densities ρκ(η; c1) for the open, flat, and closed FRW 
barotropic cosmologies, from top to bottom, respectively, and the same fluids and 
value of c1 as previously.

densities and the deceleration parameters also do not change sig-
nificantly, and show that these dissipative cosmologies are viable 
counterparts of the standard barotropic cosmologies. Despite the 
almost manifest similarity, in the nonflat cases there are features 
that make these cosmologies substantially different of the stan-
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dard ones. One such feature is that the amplitude of the scale 
factors are inverse proportional to the adiabatic indices of the cor-
responding fluids and the other is that the functional dependence 
of the cosmological functions is in a scaled variable with respect 
to the standard barotropic cosmologies. Besides, the Chiellini dissi-
pative function is in many cases a dissipation–gain function in the 
sense that, depending on the value of the parameter c1, it can be 
negative and even purely imaginary. It should not be considered 
as the result of some common viscous processes which in general 
relativity are introduced through the techniques of the relativistic 
hydrodynamic formalism [29,30]. However, a physical nature can 
be surmised if we write it in the form g(ũ; c1) = ḡκ (ũ; c1)ũ, where 
ḡκ (ũ; c1) = κγ̄ 2/

√
c1 − 2κγ̄ 2ũ2, which suggests a nonlinear con-

vective origin.
The barotropic cosmological models with rescaled adiabatic in-

dices proposed here are based on constant equations of state (con-
stant γ̄ ) which appears to be a quite good assumption for dark 
energy models, because from the statistical point of view there is 
no evidence for a time-evolving equation of state from the entire 
combination of astrophysical data available at this moment [31]. 
However, even dynamical dark energy models can be accommo-
dated, either by means of supersymmetry through which one can 
generate time-dependent barotropic indices [8] or by employing 
simple parametrizations, such as the two-parameter Chevallier–
Polarski–Linder [32,33] or recent three-parameter parametrizations 
[34,35].
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