
Causal structures in Gauss-Bonnet gravity

Keisuke Izumi*

Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,
Taipei 10617, Taiwan

(Received 11 June 2014; published 15 August 2014)

We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially
has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with
superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to
analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal
structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in
the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as
in the case of general relativity; i.e. a Killing horizon is the “event horizon” in the sense of causality. We
also analyze causal structures on nonstationary solutions with ðD − 2Þ-dimensional maximal symmetry,
including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB ≥ 0

for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light.
However, if the geometrical null energy condition is violated, gravitons can propagate faster than light.
Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold,
classical gravitons can escape from the “black hole” defined with null curves. That is, the causal structures
become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating
black holes.
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I. INTRODUCTION

Quantum gravity is one of the ultimate goals in funda-
mental physics. Many models of quantum gravity have
been proposed. Some of them lead to an effective theory
with noncanonical kinetic terms in the low-energy limit. In
such theories the maximum speeds are different for differ-
ent fields [1] and potentially superluminal modes appear
[2–5]. Meanwhile, to solve the so-called dark energy and
dark matter problems, various theories of modified gravity
have been proposed. Some of them also involve super-
luminal propagations [6–12].
In general relativity with fields having canonical kinetic

terms, the speeds of all modes are less than or equal to that
of light, and then we analyze causal structures based on null
curves. This is justified by the fact that any modes cannot
go through null hypersurfaces in a spacelike direction.
However, if a theory has superluminal modes, i.e. spacelike
propagations, the discussion based on null curves makes no
sense. We must analyze causal structures with the fastest
propagations. This is essential, for instance, in the defi-
nition of black holes. Usually, we define a black hole as the
outside of the chronological past of the future time infinity.
Here, the chronological past is defined with null curves. In
contrast, if we have superluminal modes, the chronological
past defined with null curves does not show the causal
structures and we need to define the “chronological past” in
the sense of causality with the fastest modes. This cannot be

analyzed only with the metric. Information regarding the
propagations is needed.
With superluminal propagations, the information loss

paradox of evaporating black holes may be solved.
Superluminal propagations can convey the information
from inside of the black hole to the outside. Evaporating
black holes are semiclassical objects. There, we consider
the quantum effects of matter fields on classical geometry.
Namely, we must deal with matter fields as quantum
objects, while gravity is classical. Therefore, for the
causal analysis of gravity, we can use classical physics,
which is much easier than the discussion of quantum
causality for matter fields. We expect that the property
of the causal structure is similar even for quantum matter
fields. In this paper, as a first step in the analysis of causal
structures on evaporating black holes, we deal with the
easiest modes, that is, gravitons. As a lowest-order cor-
rection of gravity theory, we consider the Gauss-Bonnet
correction term.
Gauss-Bonnet gravity is a natural extension of general

relativity in higher dimensional spacetime. In spite of the
fact that the action has the curvature-squared terms, the
equation of motion for gravity has up to the second-order
derivatives of metric [13–15], which prevents the theory
from ghost excitations. Moreover, the theory is interesting
because it is realized in the low-energy limit of heterotic
string theory [16–20]. Gauss-Bonnet gravity is studied in
many contents, such as black holes [21–27], braneworld
model [28–39], AdS/CFT correspondence [4,5,40–45] and
so on [46–50].*izumi@phys.ntu.edu.tw
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It is well known that Gauss-Bonnet gravity theory
involves superluminal propagation of gravitons; this was
noted in early works [2,3] and also in recent works in the
context of the AdS/CFT correspondence [4,5]. However,
the concrete analysis on general manifolds has not been
done. The purpose of this paper is that, with less assump-
tions, we show generic properties of causal structures.
We basically consider two cases: one is the locally
stationary spacetime, and the other is spacetime with
ðD − 2Þ-dimensional maximal symmetry.
The organization of this paper is as follows. In Sec. II, we

show the origin of superluminality with an example of a
scalar field. We also explain the relation between super-
luminality and acausality. In Sec. III, we briefly review the
method of characteristics. In Sec. IV, we define Gauss-
Bonnet gravity which we analyze. In Sec. V, we derive the
characteristic equations of Gauss-Bonnet gravity. We give
the contributions stemming from the Einstein-Hilbert and
the Gauss-Bonnet terms in Sec. V B 1 and in Sec. V B 2,
respectively. In Sec. V B 1, we also show that, in general
relativity, the characteristic hypersurface for gravitons
always becomes null. In Sec. VI A, we analyze the causal
structures in stationary cases, while in Sec. VI B we
consider cases with ðD − 2Þ-dimensional maximal sym-
metry. Finally, we summarize our work with a discussion in
Sec. VII.
We use the following notation for indices. Large Latin

letters fA;B;…g are the indices for the D-dimensional
spacetime, while Greek letters fμ; ν;…g are the indices for
the ðD − 1Þ-dimensional hypersurface Σ that we concen-
trate on. The index “0” means the direction which is not
tangent to Σ. We use the index “1” for the null direction on
the hypersurface Σ if it is null, or in Sec. VI B for the
direction which is normal to Killing directions on the
hypersurface Σ (roughly speaking, the radial direction in
the spherically symmetric case). We denote the normal
directions to the 0 and 1 directions by the small Latin
letters fi; j;…g.

II. THEORY WITH SUPERLUMINAL MODES

In the standard theory, causal structures are discussed
with null curves. Here, “the standard theory” means that in
the theory all the fields have canonical kinetic terms. In
such a theory, the highest speeds are the same as that of
light, which propagates in null direction. The causally
related region, i.e. the Cauchy development, is configured
with the fastest propagation, and thus, we can justify the
causal structures based on null curves. However, if a theory
has superluminal modes, the situation becomes different.
We must analyze causal structures based on the fastest
propagations.
Now, the question is: which theory has superluminal

modes. One example is Gauss-Bonnet gravity, where the
propagations of gravitons can be superluminal on a

nontrivial background. This was pointed out at the end
of the 1980s [2,3] and recently discussed in the AdS/CFT
context [4,5].
We show the reason why superluminal modes appear by

using a scalar field example. We first consider a scalar field
theory with a canonical kinetic term, whose equation of
motion is written as

gAB∇A∇Bϕþ VðϕÞ ¼ 0: ð1Þ

“Canonical kinetic term” means the coefficient of the
kinetic term (i.e. the second-order derivative term) is
proportional to the metric gμν. To see the maximum speed
of a propagation for ϕ, we take the high-energy limit, where
we can ignore the potential term. In the Fourier space, the
equation becomes

gABkAkBϕk ¼ 0; ð2Þ

where ϕk is a Fourier mode of ϕ with momentum kA. This
gives the solution that kA is null. However, if a theory has a
noncanonical kinetic term, the situation changes. For
instance, we consider a scalar field ~ϕ with the following
equation:

ðgAB þ α∇Aψ∇BψÞ∇A∇B
~ϕþ Vð ~ϕÞ ¼ 0; ð3Þ

where ψ is another scalar field and α is a constant. The
kinetic term has the coefficient ðgAB þ α∇Aψ∇BψÞ. Taking
the high frequency limit for ~ϕ, we can again neglect the
potential term and in the Fourier space for ~ϕ we have

ðgAB þ α∇Aψ∇BψÞ~kA ~kB ~ϕ~k ¼ 0: ð4Þ

Then, ~kA is a null direction for the effective metric
ðgAB þ α∇Aψ∇BψÞ, which is different from that for the
real metric gAB, i.e. kA. Therefore, with nonzero ∇Aψ the
fastest mode does not follow a null trajectory and can be
spacelike or timelike depending on the value of α and∇Aψ .
With some values of α and∇Aψ , the effective metric can be
Euclidean, or from a Euclidean metric we can construct a
Lorentzian effective metric [51–53].
Gravity theory has generically nonlinear kinetic terms,

and thus, it is not trivial that the maximum speed of
gravitons becomes the same as that of light. Although the
kinetic term looks complicated in general relativity, we
can check that the kinetic term for gravitons takes the
canonical form. (See Sec. V B 1.) However, if we consider
an extension of general relativity, it can easily break
the canonical structure of the kinetic terms. Since the
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Gauss-Bonnet term directly gives second-order derivative
terms in the equation of motion, adding it results in a
nontrivial form of the kinetic terms. Moreover, because
general relativity is a system with constraints, even if the
added terms do not have derivatives, it leads to a modi-
fication of the structures in the kinetic terms after solving
the constraint equations. In massive gravity, for instance,
even though the modification of general relativity is just
adding mass terms, i.e. no derivative terms, superluminal
modes appear [6–9].
We stress that superluminality does not directly result in

acausality, which means the existence of bad causal
structures such as a closed curve of propagations. If both
a theory and a state have Lorentz symmetry, superlumin-
ality causes acausality. If a superluminality mode exists,
due to Lorentz symmetry it can be adjusted to any spacelike
direction and we can easily construct closed curves.
However, if a state does not have Lorentz symmetry, we
cannot use this discussion. In the above example for a
scalar field (4), only when ∇Aψ has a nonzero value, a
nontrivial propagation appears. Then, nonzero ∇Aψ breaks
the Lorentz symmetry. Similarly, in Gauss-Bonnet gravity,
only if the curvature is not zero, which breaks Lorentz
symmetry, the propagations of gravitons become nontrivial.
In such theories, we need to check the causal structure of
each solution.

III. BRIEF REVIEW
OF CHARACTERISTICS

We briefly review the method of characteristics, which
is a powerful tool for analyzing causal structures
[7–9,11,12,54,55]. The method shows the hypersurface
beyond which the evolution equations cease to give an
unique solution. This is mathematically characterized as the
hypersurface where the coefficients of the highest-order
derivative with respect to its nontangent direction vanish.
This can be intuitively understood as follows. To solve aNth
order differential equation, generically it is only necessary to
impose N initial conditions for up to ðN − 1Þ-th order
derivatives. Namely, the evolution of ith order derivatives
with 0 < i < N − 2 is uniquely fixed by the given initial
condition for ðiþ 1Þ-th order derivatives, while the evolu-
tion for the ðN − 1Þ-th order derivative, that is Nth order
derivative, is obtained from the equation. However, if the
coefficient of theNth order derivativevanishes,we can never
solve the equation for theNth order derivative, and thus, the
evolution of the ðN − 1Þ-th order derivative cannot be fixed.
Let us see the details in the case of a partial differential

equation. We derive the hypersurface, denoted by Σ,
beyond which the evolution is not unique. Such a hyper-
surface is called the characteristic hypersurface. We define
a vector ξA which is not tangent to Σ. (Usually, ξA is chosen
to be normal to Σ for simplicity. However, it makes a null
limit complicated. Therefore, in this paper, we do not

restrict ξA to be the normal vector to Σ.) Suppose we have a
quasilinear equation for a variable ϕ,1

MA1;…;AN∂A1
…∂AN

ϕþOð∂N−1ϕÞ ¼ 0: ð5Þ
Here, a quasilinear equation means the highest-order
derivative appears linearly. This is the necessary condition
for an unique evolution.2 We decompose the equation along
the lines of the Arnowitt-Deser-Misner formalism [56,57]
with the understanding that ξA may be nontimelike. Then,
the condition of the characteristic hypersurface is that the
coefficient of ξA1…ξAN∂A1

…∂AN
ϕ becomes zero.

A characteristic hypersurface gives the edge of a Cauchy
development, which is related to the highest propagation
speed. The fastest propagation must be tangent to a
characteristic hypersurface. The intuitive explanation is as
follows. Suppose that we solve the equation with initial
conditions imposed on a hypersurface I . (See Fig. 1.)
Focusing on point p in Fig. 1, one may say that it is the
causal future of hypersurface I , if the discussion is based on
the light cone. However, the causal past of p based on all
physical propagations including the superluminal modes can
reach the outside of initial hypersurface I . Hence, the
physics at p is never uniquely fixed only with the informa-
tion on I and p is located outside of the Cauchy develop-
ment of I . Meanwhile, the complete initial conditions on I
fix the physics on q uniquely, and thus, q is in the Cauchy
development of I . The boundary of the Cauchy develop-
ment must be described with the fastest propagation. Since a
characteristic hypersurface shows a boundary beyond which
a dynamical equation cannot be uniquely solved, it is the
edge of a Cauchy development. Therefore, on a character-
istic hypersurface the fastest propagation must propagate.

IV. GAUSS-BONNET GRAVITY

We consider Gauss-Bonnet gravity in a D-dimensional
spacetime, where the action is given by

FIG. 1 (color online). Relation between the fastest propagation
and the edge of Cauchy development: Triangles mean the causal
past regions for points p and q based on the fastest propagation,
while dotted lines show the light cone from point p defined with
null curve.

1ϕ does not need to be a scalar field.
2Exactly stated, the necessary condition is that the equation is

linear for ξA1…ξAN∂A1
…∂AN

ϕ.
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S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

2κD−2 fR − 2Λþ αðR2 − 4RABRAB þ RABCDRABCDÞg þ Lm

�
; ð6Þ

where RABCD, RAB, R and Λ are the Riemann tensor, the
Ricci tensor, the Ricci scalar and the cosmological con-
stant, respectively. Lm is the Lagrangian for matter fields.
The Gauss-Bonnet parameter is denoted by α, which has
the dimension of length squared. We consider the case for
α ≥ 0 where the Einstein vacuum is stable [13–16]. Since
for D ≤ 4 the Gauss-Bonnet term becomes trivial, in this
paper cases with D > 4 are considered.

The equation of motion can be derived from the variation
with respect to gAB as

GAB þ ΛgAB −
α

2
HAB ¼ 2κD−2TAB; ð7Þ

where GAB is the Einstein tensor and HAB reads

HAB ≔ ðR2 − 4RCDRCD þ RCDEFRCDEFÞgAB − 4ðRRAB − 2RACRB
C − 2RACBDRCD þ RACDERB

CDEÞ: ð8Þ

TAB is the energy-momentum tensor for matter fields. We
assume that TAB does not include the highest-order deriva-
tive of the metric, and thus, it never affects the character-
istics of gravitons.

V. CHARACTERISTICS

We derive the characteristic equations of Gauss-Bonnet
gravity. The characteristics give the information of the
propagating modes. In theories with constraints, the struc-
tures of the characteristics are generically complicated. The
first-order formalism makes the structure simpler, and thus,
in accordance with the technique in Refs. [7–9] we develop
the first-order formalism. Then, after reviewing the char-
acteristics in general relativity, we derive the characteristics
in Gauss-Bonnet gravity [2,3].
In the discussion of characteristics, we consider the

evolution from a hypersurface. We denote the hypersurface
by Σ. We define a vector ξAð ∂

∂xAÞ ≔ ð ∂∂tÞ such that ξA is not
tangent to Σ. We also define a dual vector ζAdxA ≔ dt.
Using ξA and ζA, we can decompose spacetime into the
hypersurface Σ and the independent direction ξA by the
projection operator ⊤A

B ≔ δAB − ξAζB. We will denote its
action on tensors by Greek indices, i.e.

Vμ ≔ ⊤A
μVA and Vμ ≔ ⊤μ

AV
A: ð9Þ

Meanwhile, we denote the contraction of ξA and ζA on an
index of any tensor by a subscript “0” and a superscript “0,”
respectively, i.e. V0 ≔ ξAVA and V0 ≔ ζAVA.

A. First-order analysis

The equation of motion is written with the Riemann
curvature, only which includes the second-order derivative
of the metric. We rewrite it in a first-order differential
equation with the Levi-Civita connection:

ΓABC ≔ gADΓD
BC ¼ 1

2
ð∂CgAB þ ∂BgAC − ∂AgBCÞ: ð10Þ

This obviously satisfies the symmetric condition of ΓABC
with respect to B and C. The evolution of the metric from
the hypersurface Σ is obtained from the above definition of
the Levi-Civita connection:

Γ000 ¼
1

2
∂0g00; ð11Þ

Γα00 ¼
1

2
ð2∂0g0α − ∂αg00Þ; ð12Þ

Γ0αβ ¼
1

2
ð∂αg0β þ ∂βg0α − ∂0gαβÞ: ð13Þ

With the Levi-Civita connection, Rα000 must be zero, which
gives

∂0Γ00α − ∂αΓ000 ¼ fα½gAB;ΓCDE�: ð14Þ

Here, fα½gAB;ΓCDE� is a function of gAB and ΓCDE.
Moreover, the Riemann curvature constructed by the
Levi-Civita connection satisfies Rβγ0α − R0αβγ ¼ 0, which
can be written as

∂0Γβγα−∂αΓβγ0−∂βΓ0αγþ∂γΓ0αβ¼fαβγ½gAB;ΓCDE�; ð15Þ

where fαβγ½gAB;ΓCDE� is a function of gAB and ΓCDE.
Equations (14) and (15) fix the evolutions of Γ00α and Γαβγ .
Moreover, using Eq. (13), Γαβ0 can be written as

Γαβ0 ¼
1

2
ð∂0gαβ þ ∂βgα0 − ∂αgβ0Þ

¼ −Γ0αβ þ ∂βgα0: ð16Þ

This is a constraint equation, which fixes the value of Γαβ0.
Now, the time evolutions of ðDþ 1ÞD=2 variables Γ000,

Γα00 and Γ0αβ are not fixed yet. The gravitational equation
of motion fixes DðD − 1Þ=2 of them generically, which are
physical degrees of freedom. Meanwhile, the other D
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degrees of freedom cannot be fixed. which are related to the
gauge degrees of freedom. We can easily find that ∂0Γ000

and ∂0Γα00 never appear in the form of the Riemann
curvature. They usually are fixed by hand, i.e. by gauge
fixing, or just ignored. The remaining DðD − 1Þ=2 com-
ponents Γ0αβ must be the physical degrees of freedom, and
we discuss their characteristics.

B. Characteristic equation

Now, we discuss the characteristics only for Γ0αβ. ∂0Γ0αβ

appears only in R0α0βð¼ R0β0α ¼ −Rα00β ¼ � � �Þ,3 and thus,
we need only to check its coefficient. We review character-
istics in general relativity and then derive them in Gauss-
Bonnet gravity [2,3].

1. General relativity

Terms including R0α0β in the Einstein tensor GAB are
written as

GAB ¼ R0α0βAAB;αβ þ ðother termsÞ; ð17Þ

AAB;αβ ≔ gαβg0Ag0B þ g00gαAgβB − g0αg0AgβB

− g0αgβAg0B − g00gαβgAB þ g0αg0βgAB: ð18Þ

Since we can easily check that AAB;αβ becomes zero for
ðA;BÞ ¼ ð0; 0Þ; ð0; μÞ; ðμ; 0Þ, only ðμ; νÞ components are
related to characteristic equations. Aμν;αβ can be written
simply as

Aμν;αβ ¼ g00ðhαμhβν − hαβhμνÞ; ð19Þ
where hμν is the inverse matrix of the induced metric on the
hypersurface Σ and written in terms of gAB as

hμν ¼ gμν −
g0μg0ν

g00
: ð20Þ

Although the form of hμν seems to give a singular behavior
for g00 ¼ 0 where the hypersurface Σ becomes null, the
singular parts are canceled with each other in Eq. (19).
Therefore, even if we take the limit as Σ approaches to a
null hypersurface with the above expression, Aμν;αβ is still
regular. Thus, the limit is continuous to the case on the
exact null hypersurface.
We confirm here that the characteristic hypersurface in

general relativity becomes null. The characteristic equa-
tions on the hypersurface Σ are

Aμν;αβΓ̄0αβ ¼ 0; ð21Þ

where Γ̄0αβ means it is not the value of the vector Γ0αβ, but
represents the change of Γ0αβ in a certain direction. The
condition for characteristics is written as

0 ¼ det½Aμν;αβ�
¼ −2ðdet½gAB�Þ−6ðdet½hμν�Þ−2; ð22Þ

where, taking the determinant det½Aμν;αβ� on the first line,
we consider two combinations ðμ; νÞ and ðα; βÞ as two
indices of the rank-2 matrix. While det½gAB�−1 must be
nonzero on a regular manifold, det½hμν�−1 can be zero if and
only if the hypersurface Σ is null. Therefore, the character-
istic hypersurfaces for gravitons in general relativity are
always null.
For our later discussion, we check which components of

the equation become characteristics. Since now we know
that the characteristic hypersurface is null, we consider a
null hypersurface. We can always diagonalize and normal-
ize the induced metric at a point as

ðh−1Þμν ¼ diagð0; 1; 1;…; 1Þ: ð23Þ

We use the index “1” for the first component, i.e. the null
direction, while the others are labeled with ði; j;…Þ. hμν
diverges as O½ðg00Þ−1� only for ðμ; νÞ ¼ ð1; 1Þ, while the
others are finite, which are h1i ¼ 0 and
hij ¼ diagð1; 1;…; 1Þ. Because Aμν;αβ is proportional to
g00, which is zero on a null hypersurface, without h11 it
becomes zero. Then, Eq. (21) becomes

−g00h11
X
i

Γ̄0ii ¼ 0 ½for ð1; 1Þ component�; ð24Þ

1

2
g00h11Γ̄01i ¼ 0 ½for ð1; iÞ component�; ð25Þ

−g00h11Γ̄011δij ¼ 0 ½for ði; jÞ component�: ð26Þ

Only Γ̄011 appears in Eq. (26), and thus, there are
DðD − 3Þ=2 degeneracies. Equations (24) and (25) fix
Γ̄01i and the trace of Γ̄0ij. As a result, we cannot fix totally
DðD − 3Þ=2 of Γ̄0ij, which are traceless components of
Γ̄0ij. The number of degrees of freedom is equal to that of
gravitational propagations. Since Γ0ij includes ∂0gij, these
characteristics are related to the propagations of traceless
components of gij. Moreover, the null direction labeled
with 1 is transverse direction for gij. Therefore, these
characteristics are corresponding to all of gravitational
modes propagating in 1 direction.

2. Gauss-Bonnet gravity

The terms including R0α0β in HAB are written in

HAB ¼ R0α0βBAB;αβ þ ðother termsÞ; ð27Þ

3In the previous subsection, Γαβ0 was fixed by the constraint
equation (16), while we discussed the time evolution for the
others. Thus, the time derivative of Γαβ0 gives that of Γ0αβ through
the constraint equation (16), i.e. ∂0Γαβ0 ¼ −∂0Γ0αβ þ � � �, which
joins in the characteristic equation for Γ0αβ. This effect is included
in our analysis by considering Rα00β, etc.
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BAB;αβ ≔ ð4g00gαβgABR − 4g0αg0βgABR − 8g00gABRαβ − 8gαβgABR00 þ 16g0αgABR0β

− 8g00gαβRAB þ 8g0αg0βRAB − 4g00gαAgβBRþ 4g0αg0AgβBRþ 4g0αg0BgβAR

− 4gαβg0Ag0BRþ 8g00gαARβB þ 8g00gαBRβB þ 8gαβg0AR0B þ 8gαβg0BR0A

− 8g0αg0ARβB − 8g0αg0BRβA − 8g0αgβAR0B − 8g0αgβBR0A þ 8g0Ag0BRαβ

þ 8gαAgβBR00 − 8gαAg0BR0β − 8gαBg0AR0β þ 8gABR0α0β þ 8gαβR0A0B þ 8g00RαAβB

− 8g0αRAβB0 − 8g0αRBβA0 − 8g0ARBα0β − 8g0BRAα0β − 8gαARB0β0 − 8gαBRA0β0Þ: ð28Þ

For ðA;BÞ ¼ ð0; 0Þ; ð0; μÞ; ðμ; 0Þ, BAB;αβ gives zero. The other components become

Bμν;αβ ¼ 4g00Rλωγδðhλγhωδhμνhαβ − hλγhωδhμαhνβ þ 2hλμhγαhωδhνβ þ 2hλνhγαhωδhμβ

− 2hλαhγβhωδhμν − 2hλμhγνhωδhαβ þ 2hλμhωαhγνhδβÞ: ð29Þ

Although this also looks singular in the case where
the hypersurface Σ is null, the singular parts are
canceled out and it becomes finite. Note that Bμν;αβ does
not involveR0α0β. Therefore, the equation of motion does not
include the square of ∂0Γ0αβ. It is a notable property ofGauss-
Bonnet gravity, which makes the time evolution unique.
The characteristic equations for gravitons in Gauss-

Bonnet gravity are composed of the Einstein-Hilbert and
the Gauss-Bonnet components:

�
Aμν;αβ −

α

2
Bμν;αβ

�
Γ̄0αβ ¼ 0: ð30Þ

Let us see that the characteristic hypersurface is generically
not null. We see how Eqs. (24)–(26) are modified. Each
component is written with a diagonalized and normalized
induced metric (23) as

−g00h11
�X

i

Γ̄0ii þ 2α

�X
i;k;l

RklklΓ̄0ii − 2
X
i;j;k

RikjkΓ̄0ij

��
¼ 0 ½for ð1; 1Þ component�; ð31Þ

1

2
g00h11

�
Γ̄01i þ 2α

�X
k;l

RklklΓ̄01i − 2
X
j;k

RikjkΓ̄01j

�
þ 8α

X
j;k

ðR1kikΓ̄0jj − R1kjkΓ̄0ij − R1jikΓ̄0jkÞ
�
¼ 0

½for ð1; iÞ component�; ð32Þ

− g00h11
�
δijΓ̄011 þ 2α

�X
k;l

Rklklδij − 2Rikjk

�
Γ̄011 þ α

X
k

ðR1ijk þ R1jikÞΓ̄01k

þ4α

�
δij

X
k;l

ðR1k1kΓ̄0ll − R1k1lΓ̄0klÞ þ
X
k

ðR1i1kΓ̄0kj þ R1j1kΓ̄0ki − R1k1kΓ̄0ij − R1i1jΓ̄0kkÞ
��

¼ 0

½for ði; jÞ component�: ð33Þ

We can find that the components of Eq. (26), which are
degenerated on a null hypersurface in general relativity, are
modified and with a generic form of RABCD the degener-
acies are resolved. We can easily see it by considering a
simple example, where Rijkl ¼ 0, R1ijk ¼ 0 and
R1i1j ¼ Cδij. Then, Eqs. (31) and (32) become the same
as those in general relativity, i.e. Eqs. (24) and (25), while
the ði; jÞ component (33) becomes

−g00h11
�
δijΓ̄011 þ 4αðD − 4ÞC

�
δij

X
k

Γ̄0kk − Γ̄0ij

��
¼ 0:

ð34Þ

In the above equation, we can see that the degeneracies are
completely resolved. Therefore, this null hypersurface is
not characteristic.
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For R1ijk ¼ 0 and R1k1l ¼ 0, in contrast, the structure of
characteristic equation is the same as that in general
relativity. Namely, all components of Eq. (33) are
equations for Γ̄011 or trivial, and thus, they are still
degenerate. DðD − 3Þ=2 degrees of freedom of Γ̄0ij even-
tually cannot be fixed as in general relativity. This means
that the null hypersurface is still characteristic.

VI. CAUSAL STRUCTURES

Now we have the characteristic equation of Gauss-
Bonnet gravity. Using it, we can analyze the causal
structures. Firstly, we consider stationary solutions and
find that Killing horizons express the causal edges, i.e. a
black hole horizon in the sense of causality. Secondly, we
consider ðD − 2Þ-dimensionally maximally symmetric sol-
utions without the stationary assumption. We show that, if
the geometrical null energy condition is satisfied, the
speeds of gravitons must be less than or equal to that of
light. On the other hand, on evaporating black holes where
the geometrical null energy condition is expected to be
broken, gravitons can propagate faster than light.

A. Locally stationary cases

In Sec. V B, we saw that if on a null hypersurface the
conditions R1ijk ¼ 0 and R1i1j ¼ 0 are satisfied, the hyper-
surface is characteristic for all degrees of freedom of
gravitons. We shall see a sufficient condition for this.
Here, we consider the case where the hypersurface Σ is

null. We denote the direction normal to Σ by the label 1; i.e.
with the normal null vector nA we have V1 ≔ nAVA. The
normal vector nA lies on the hypersurface Σ. The Latin
indices ði; j;…Þ label the other spacelike directions normal
to nA on the hypersurface Σ. Since all of vectors lying on
the hypersurface Σ must be normal to nA, we have g11 ¼ 0
and g1i ¼ 0 on the hypersurface Σ. Therefore, their higher-
order derivatives with respect to ∂1 and ∂i, i.e. ∂μ…∂νg11
and ∂μ…∂νg1i, must be zero. Furthermore, the conditions
g11 ¼ 0 and g1i ¼ 0 lead to g00 ¼ 0 and g0i ¼ 0. Imposing
the additional conditions

∂1gij ¼ 0; ∂2
1gij ¼ 0 and ∂1∂kgij ¼ 0; ð35Þ

together with the above conditions we can obtain R1ijk ¼ 0
and R1i1j ¼ 0 by direct calculation. Thus, a combination of
Eqs. (35) is a sufficient condition for the null hypersurface
Σ to be characteristic.
On a Killing horizon, the normal null vector nA is the

Killing vector, which results in nA∂Agμν ¼ ∂1gμν ¼ 0.
Combined with the fact that the label “k” is the index
for the tangent direction to hypersurface Σ, we can find that
Eqs. (35) are always satisfied on Killing horizon.
Therefore, on a stationary solution such that the Killing
horizon is coincident with the event horizon defined by null
curves, i.e. the event horizon is exactly the causal edge for

gravitons. Classical gravitons never come out from inside
of stationary black holes.

B. ðD − 2Þ-dimensionally maximally symmetric cases

On a generic spacetime, Eqs. (35) are not satisfied. Then,
it is important to see how the characteristic hypersurface is
modified, i.e. whether it becomes spacelike or timelike. A
spacelike characteristic results in the existence of a super-
luminal mode, which breaks the discussion of causal
structures based on null curves. Here, for simplicity, we
consider cases with a maximally symmetric D − 2 dimen-
sional space, where the metric can be generically written as

ds2 ¼ −2fðu; vÞdudvþ ½Rðu; vÞ�2dΩ2
D−2: ð36Þ

We choose both UA ≔ ð∂=∂uÞA and VA ≔ ð∂=∂vÞA to be
future pointing null vectors; i.e. fðu; vÞ is positive. dΩ2

D−2
is the D − 2 dimensional metric that is maximally sym-
metric, constant and spacelike. The metric component for
dΩ2

D−2 is defined as

dΩ2
D−2 ≔ γijdxidxj: ð37Þ

fðu; vÞ and Rðu; vÞ are functions of u and v. We consider a
maximally symmetric D − 2 dimensional hypersurface Σ,
on which v̄ ≔ vþ ϵu is constant. It is convenient to use
new coordinate variables ū ≔ u and v̄, with which the
metric (36) is written in

ds2 ¼ −2fdūdv̄þ 2ϵfdū2 þ R2dΩ2
D−2: ð38Þ

ŪA ≔ ð∂=∂ūÞA lies on the hypersurface Σ and V̄A ≔
ð∂=∂v̄ÞAð¼ VAÞ is a null vector that is never tangent to
Σ. For ϵ > 0, ϵ < 0 or ϵ ¼ 0, the hypersurface Σ is
spacelike, timelike or null, respectively.
First of all, we show that, if RABUAUB ¼ 0, the hyper-

surface for v ¼ const is characteristic. Seeing Eq. (33), we
know that for RAiBjUAUB ¼ 0 all degeneracies are never
resolved. Because of the symmetry, RAiBjUAUB must be
proportional to gij, i.e. RAiBjUAUB ¼ Cgij. Since the
directions labeled with ði; j;…Þ are normal to two null
vector UA and VA, we have

RABUAUB ¼ RiAjBUAUBgij ¼ ðD − 2ÞC: ð39Þ

Therefore, RABUAUB ¼ 0 results in C ¼ 0, which gives
RAiBjUAUB ¼ Cgij ¼ 0, and the characteristic hypersur-
face is null.
Next, we consider cases where RABUAUB ≠ 0. We have

RAiBjUAUB ¼ Cgij with nonzero C and the sign of C is
coincident with that of RABUAUB. This makes the degen-
eracies of Eq. (33) resolved and shifts the characteristic
hypersurface. Since the characteristic hypersurface
becomes non-null, i.e. ϵ ≠ 0, by considering the effect of
shifting the hypersurface, we have a modification of
Eq. (33), which is originally derived on a null hypersurface.
Both the Einstein tensor and the Gauss-Bonnet term give
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corrections, but in regions with small curvature4 the
correction arising from the Gauss-Bonnet term is negligibly
small compared to that coming from the Einstein tensor.
Therefore, we ignore the correction stemming from the
Gauss-Bonnet term. We show, by the discussion of
the balance between the modifications stemming from

the violation of RABUAUB ¼ 0 and from the non-nullity
of hypersurface Σ, whether the hypersurface Σ becomes
spacelike or timelike. To see this, we only need to check the
sign of ϵ.
For RABUAUB ¼ ðD − 2ÞC ≠ 0, the coefficients of Γ̄0ij

in Eq. (33) read

− 4αg00h11
�
δij

X
k;l

ðR1k1kΓ̄0ll − R1k1lΓ̄0klÞ þ
X
k

ðR1i1kΓ̄0kj þ R1j1kΓ̄0ki − R1k1kΓ̄0ij − R1i1jΓ̄0kkÞ
�

¼ 4αðD − 4ÞCf−2ðgijgkl − gikgjlÞΓ̄0kl: ð40Þ

The contribution of shifting the hypersurface from null can
be obtained from Eq. (19) as

Aij;klΓ̄0kl ¼ 2ϵf−1ðgijgkl − gikgjlÞΓ̄0kl; ð41Þ

where, as we commented, we ignore the contribution
coming from the Gauss-Bonnet term. The degeneracy in
the modified equation happens only when these two
contributions cancel. Namely, the condition is

4αðD− 4ÞCf−2 þ 2ϵf−1 ¼ 0 ⇔ ϵ¼ −2αðD− 4ÞCf−1:
ð42Þ

For D ≤ 4 the Gauss-Bonnet term becomes trivial, and
thus D must be larger than four. We have α > 0 for the
stability of the Einstein vacuum and set f to be positive.
As a result, the sign of ϵ is opposite to that of C, i.e.
RABUAUB.
If the null energy condition is satisfied in the geometrical

sense, that is RABNANB ≥ 0 where NA is any null vector,5 ϵ
is always nonpositive, and thus the characteristics is time-
like or null. This means that the speed of gravitons in the
radial direction on a spherically symmetric spacetime and
of gravitational plane waves on flat space is less than or
equal to that of light. The equality happens only for
RABUAUB ¼ 0. Gravitons do not break the causal
structure.6

On the other hand, if the geometrical null energy
condition is violated, we potentially have superluminal

modes in the radial direction. Namely, for RABUAUB < 0

the characteristic becomes spacelike. There may be two
possibilities for it to happen. In Gauss-Bonnet gravity, the
null energy condition for matter fields TABNANB ≥ 0 does
not result in the geometrical null energy condition. In the
case with ðD − 2Þ-dimensional maximal symmetry, the
relation between the null energy condition for matter fields
and the geometrical one has been investigated [46–48]. We
have two branches of solutions: the Einstein branch and the
Gauss-Bonnet branch. The definition of the Einstein branch
is a sequence of solutions where the generalized Misner-
Sharp quasilocal mass approaches to the original one in the
limit as the Gauss-Bonnet parameter α goes to zero. If not,
the solution belongs to the Gauss-Bonnet branch. On the
Einstein branch the sign of TABUAUB coincides with that of
RABUAUB, while on the Gauss-Bonnet branch it becomes
opposite. Therefore, on the Gauss-Bonnet branch, if we
impose the null energy condition on matter fields,
RABUAUB < 0 can occur. The other possibility stems from
the quantum effects on curved space time. Considering the
backreaction of the Hawking radiation, we expect that the
black hole is shrinking, i.e. its area is decreasing. With a
decreasing area of a black hole, it is necessary to break the
geometrical null energy condition. Exactly stated, we need
the violation of RABUAUB ≥ 0 for the outgoing null vector
UA. As a result, for evaporating black holes, null hyper-
surfaces are not the boundary of causally related region. In
other words, gravitons can escape from “black holes”
defined with null curves.

VII. SUMMARY

We have analyzed causal structures in Gauss-Bonnet
gravity. A theory with noncanonical kinetic terms poten-
tially has superluminal propagations. Gauss-Bonnet gravity
is one such theory. This was pointed out at the end of
the 1980s [2,3], and that the concrete solutions having
superluminal propagations was shown in Refs. [4,5].
Superluminal propagations make causal structures compli-
cated. We should discuss causal structures based not on null
curves but on the fastest modes.

4Gauss-Bonnet gravity is the low-energy effective theory of
Lovelock gravity obtained by ignoring the higher curvature terms
called Lovelock terms [58]. Smallness of curvature is required for
it to be valid to ignore these terms.

5In the general relativity through the Einstein equation we can
show that the geometrical null energy condition RABNANB ≥ 0 is
equivalent to the null energy condition defined with energy-
momentum tensor TABNANB ≥ 0; however in a general gravity
theory we do not have the equivalence. Here, “geometrical sense”
means that the condition is the same as that rewritten in
geometrical terms with the Einstein equation.

6If the speeds of all fields become less than that of light, the
causal structure must be modified.
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To analyze causal structures, we derived the character-
istic equations in Sec. V. There, we have not fixed the gauge
degrees of freedom, and obtained a result consistent with
Refs. [2,3]. In our formalism, since the vector ξA is not
needed to be normal to the hypersurface Σ unlike in
Refs. [2,3], we can take the smooth limit as Σ approaches
to a null hypersurface. We have demonstrated that with a
generic curvature the Gauss-Bonnet effect resolves the
degeneracies of characteristic equations on null hypersur-
face. The resolution means that the directions of the
graviton propagations are not null.
With the characteristic equations, we have analyzed the

causal structures in Sec. VI. We have discussed locally
stationary cases in Sec. VI A. We have proved that if
Eqs. (35) are satisfied on a null hypersurface, the hyper-
surface is a characteristic. Since on Killing horizons these
conditions are always satisfied, they are exactly the edges
of Cauchy development for gravitons. Namely, on sta-
tionary spacetime, we can trust that the causal edges based
on null curves and Killing horizons become exactly the
event horizons in the sense of causality.
We have also analyzed the causal structure on solutions

with D − 2 dimensional maximal symmetry in Sec. VI B.
We have shown that, if the null energy condition in the
geometrical sense is satisfied, the radial velocities of
gravitons are less than or equal to that of light. On the
Einstein branch, the geometrical null energy condition
holds if the null energy condition on matter fields does.
Since the existence of subluminal modes does not change
the fact that photons have the maximum speed in the theory,
it does not break the discussions of causal structures based
on null curves. Namely, nothing harmful appears in the
sense of causality. However, with subluminal gravitons
gravitational Cherenkov radiation may occur. Since the
Gauss-Bonnet term appears only in higher-dimensional
theory, we need to consider the compactification of
higher dimensions [59] or the braneworld models
[28–39]. They could be constrained from observational
results [60,61].
On the other hand, if the geometrical null energy

condition is violated, the radial propagation of gravitons
on a spherically symmetric space can be faster than light.
Exactly stated, if RABUAUB < 0 is satisfied for an out-
going (or ingoing) null vector UA, the outgoing (ingoing)
propagations of gravitons are faster than light. It happens
on the Gauss-Bonnet branch if we impose the null energy
condition on matters, i.e. TABUAUB ≥ 0. Moreover, if we
consider the backreaction of the Hawking radiation to
gravity, the geometrical null energy condition should be
violated. Considering the backreaction of the Hawking
radiation, particles with energy are emitted, and thus, the
mass of the black hole is decreasing. This leads to the
decreasing of its area. In contrast, with the geometrical
null energy condition, the area of a black hole must
increase. Consequently, on an evaporating black hole,

we have a violation of the geometrical null energy
condition.
Considering some UV-complete theories, such as super-

string theory, noncanonical kinetic terms appear in their
effective theory. As we have demonstrated in the case of
Gauss-Bonnet gravity, such a theory potentially has super-
luminal modes. Superluminal modes may be one of the
solutions for the information loss paradox of an evaporat-
ing black hole. When we discuss an evaporating black
hole, we use the semiclassical approach of gravity. Namely,
we quantize matter fields, while gravity is classical. It is
possibly hard to discuss the causal structure of a quantum
system. Using graviton propagation, we do not bother with
the difficulty of quantum systems. Therefore, Gauss-
Bonnet gravity is a good objective to see the effect
stemming from the noncanonical kinetic terms on an
evaporating black hole. We expect that quantized matter
fields have similar causal structures. We have the result that
on an evaporating black hole the propagation of gravitons
is faster than light. This means that classical gravitational
waves can escape from a black hole that is defined by
null curves. Therefore, the event horizon defined with
null curves is not the edge of the causal region and
information can easily leak from this event horizon. In
the region where curvature becomes large, the higher
curvature terms of Lovelock theory [58] become more
dominant and the causal structures are expected to be more
nontrivial.
Conversely, superluminal modes might be prohibited

by the discussion of UV completion [62]. If so, a large
α is forbidden because the solution with superluminal
gravitons was found in Refs. [4,5] for α > − Λ

400
with a

negative cosmological constant Λ in a five-dimensional
spacetime. Considering more general solutions in Gauss-
Bonnet gravity, the superluminal modes could easily
appear because there is no direct way to confine the
geometrical energy condition from the energy condition
on matter fields through the equation of motion. This
may result in the end of the theory. Therefore, if the
existence of superluminal modes is prohibited, we need
some mechanism to remove out solutions with the super-
luminal modes such as the Gauss-Bonnet branch, for
instance, by revising the gravitational equation with non-
trivial forms of matter actions or its coupling with gravity.
The problem might be related to the nonlinear quantum
instability of the Einstein vacuums in Gauss-Bonnet
gravity [50].
In this paper, we have concentrated on Gauss-

Bonnet gravity, which is the lowest-order correction of
Lovelock gravity. We expect the same property to hold in
Lovelock gravity and will analyze it in the future. Without
the stationary assumption, we have analyzed only the
metric with D − 2 dimensional maximal symmetry, but it
would be interesting to discuss more general cases, which
are also our future works.
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