Effective Field Theory of Anisotropic Inflation

Toshifumi Noumi

HKUST Jockey Club Institute for Advanced Study, Hong Kong U of Science & Technology

mainly based on a paper in preparation with J.Gong, G.Shiu, J.Soda, M.Yamaguchi
see also arXiv:1412.5601 (published in PRD) with Y.Hidaka and G.Shiu

@LeCosPA, December 14th 2015
introduction
single field slow-roll inflation is perfect!

search for small deviations from the standard single field inflation?

1. inflation as a probe of new particles & new physics
 cf. cosmological collider physics
 [Chen-Wang ’09, Baumann-Green ’11, TN-Yamaguchi-Yokoyama ’12, ArkaniHamed-Maldacena ’15, …]

2. precision test of our homogeneity & isotropy assumptions
test of isotropy

anisotropic universe (Bianchi type 1):

\[ds^s = -dt^2 + a^2 e^{2\sigma} (dx^2 + dy^2) + a^2 e^{-4\sigma} dz^2 \]

- \(\dot{\sigma}(t) \) characterizes spacetime anisotropy (FRW for \(\sigma = \text{constant} \))
- isometry: spatial translations & x-y rotation
test of isotropy

anisotropic universe (Bianchi type 1):

\[ds^2 = -dt^2 + a^2 e^{2\sigma} (dx^2 + dy^2) + a^2 e^{-4\sigma} dz^2 \]

- \(\dot{\sigma}(t) \) characterizes spacetime anisotropy (FRW for \(\sigma = \text{constant} \))
- isometry: spatial translations & x-y rotation

no rotational symmetries in x-z, y-z planes!
\(\rightarrow \) deviations from predictions in standard inflation
test of isotropy

anisotropic universe (Bianchi type 1):

\[ds^s = -dt^2 + a^2 e^{2\sigma} (dx^2 + dy^2) + a^2 e^{-4\sigma} dz^2 \]

- \(\dot{\sigma}(t) \) characterizes spacetime anisotropy (FRW for \(\sigma = \text{constant} \))
- isometry: spatial translations & x-y rotation

no rotational symmetries in x-z, y-z planes!
→ deviations from predictions in standard inflation

- statistical anisotropy

\[\langle \zeta_k \zeta_{k'} \rangle = (2\pi)^3 \delta^{(3)}(k + k') \frac{(2\pi)^3}{k^3} P_\zeta(k)(1 + g_\ast \sin^2 \theta) \]

※ current constraint by Planck: \(|g_\ast| < 0.03 \) (95% CL)
test of isotropy

anisotropic universe (Bianchi type 1):

\[ds^s = -dt^2 + a^2 e^{2\sigma} (dx^2 + dy^2) + a^2 e^{-4\sigma} dz^2 \]

- \(\dot{\sigma}(t) \) characterizes spacetime anisotropy (FRW for \(\sigma = \text{constant} \))
- isometry: spatial translations & x-y rotation

no rotational symmetries in x-z, y-z planes!

→ deviations from predictions in standard inflation

- statistical anisotropy

\[\langle \zeta_k \zeta_{k'} \rangle = (2\pi)^3 \delta^{(3)}(k + k') \frac{(2\pi)^3}{k^3} P_\zeta(k)(1 + g_\ast \sin^2 \theta) \]

※ current constraint by Planck: \(|g_\ast| < 0.03 \) (95% CL)

- primordial gravitational waves

mixing between scalar & tensor \(\langle \zeta \gamma_{ij} \rangle \neq 0 \)

→ affect the tensor sector in more general
Nambu-Goldstone modes

spontaneous breaking of rotational symmetries

→ there appear corresponding NG modes
Nambu-Goldstone modes

spontaneous breaking of rotational symmetries

→ there appear corresponding NG modes

NG mode π (inflaton)
for time translations

anisotropic mixing

NG modes for “broken rotation”

primordial tensor mode
Nambu-Goldstone modes

spontaneous breaking of rotational symmetries
→ there appear corresponding NG modes

NG mode π (inflaton) for time translations
primordial tensor mode

NG modes for “broken rotation”

anisotropic mixing

can we have generic relations between spacetime anisotropy and cosmological observables from the spacetime symmetry viewpoint?
→ develop EFT for such fluctuations around anisotropic universe
Nambu-Goldstone modes

spontaneous breaking of rotational symmetries
→ there appear corresponding NG modes

NG mode π (inflaton) for time translations

primordial tensor mode

NG modes for “broken rotation”

anisotropic mixing

NG mode spectrum is not unique for spacetime symmetry breaking!

can we have generic relations between spacetime anisotropy and cosmological observables from the spacetime symmetry viewpoint?
→ develop EFT for such fluctuations around anisotropic universe
global vs local viewpoints of spacetime symmetry

[cf. Hidaka-TN-Shiu ’14]
general arguments

in contrast to internal symmetry breaking,

of NG modes ≠ # of broken global symmetries

for spacetime symmetry breaking

ex. conformal symmetry breaking → 1 NG mode called dilaton
general arguments

in contrast to internal symmetry breaking,

\# of NG modes ≠ \# of broken global symmetries

for spacetime symmetry breaking

ex. conformal symmetry breaking \(\rightarrow\) 1 NG mode called dilaton

NG modes = local transformations of broken symmetry

\(\rightarrow\) \# of NG modes = \# of broken local symmetries

(diffs, local Lorentz, ...)

※ several NG mode contents can appear

for a given global symmetry breaking pattern
general arguments

in contrast to internal symmetry breaking,

of NG modes ≠ # of broken global symmetries

for spacetime symmetry breaking

ex. conformal symmetry breaking → 1 NG mode called dilaton

NG modes = local transformations of broken symmetry

→ # of NG modes = # of broken local symmetries

(diffs, local Lorentz, ...)

※ several NG mode contents can appear

for a given global symmetry breaking pattern

for the correct identification of NG modes and EFT construction,

it is convenient to gauge the (broken) spacetime symmetries

by introducing curved coordinates, vierbein, etc.
isotropic inflation and symmetry breaking

- global symmetry breaking pattern for isotropic inflation:

 \[\text{dS/Minkowski isometry} \rightarrow \text{FRW isometry} \]

 ※ \(10 - 6 = 4\) broken global symmetries
isotropic inflation and symmetry breaking

- global symmetry breaking pattern for isotropic inflation:
 \[
 \text{dS/Minkowski isometry} \rightarrow \text{FRW isometry}
 \]
 \[
 \Rightarrow 10 - 6 = 4 \text{ broken global symmetries}
 \]

- various local symmetry breaking patterns

1. single field inflation: \(\langle \phi \rangle = \bar{\phi}(t) \)
 broken time diffs \(\Leftrightarrow \) 1 NG mode for time translation

2. solid inflation [Endlich et al ’12]: \(\langle \phi^I \rangle = x^I \ (I = 1, 2, 3) \)
 3 broken spatial diffs \(\Leftrightarrow \) 3 NG modes for spatial translations

3. inflaton + local boost breaking (cf. Einstein-Aether theory)
 broken time diffs & local boosts \(\Leftrightarrow \) 1 + 3 NG modes
isotropic inflation and symmetry breaking

- global symmetry breaking pattern for isotropic inflation:

 \[\text{dS/Minkowski isometry} \rightarrow \text{FRW isometry} \]

 \[\times 10 - 6 = 4 \text{ broken global symmetries} \]

- various local symmetry breaking patterns

 1. single field inflation: \(\langle \phi \rangle = \bar{\phi}(t) \)

 broken time diffs \(\Leftrightarrow \) 1 NG mode for time translation

 2. solid inflation [Endlich et al ’12]: \(\langle \phi^I \rangle = x^I \ (I = 1, 2, 3) \)

 3 broken spatial diffs \(\Leftrightarrow \) 3 NG modes for spatial translations

 3. inflaton + local boost breaking (cf. Einstein-Aether theory)

 broken time diffs & local boosts \(\Leftrightarrow \) 1 + 3 NG modes

 \[\times \text{ see Delacretaz-TN-Senatore to appear on arXiv tomorrow!} \]
anisotropic inflation and symmetry breaking

- # of isometric symmetries

dS/Minkowski (4 + 6) → FRW (3 + 3) → Bianchi type 1 (3 + 1)
anisotropic inflation and symmetry breaking

- # of isometric symmetries

dS/Minkowski (4 + 6) \rightarrow FRW (3 + 3) \rightarrow Bianchi type 1 (3 + 1)

- local symmetry breaking patterns in anisotropic models

1. inflaton + vector [Watanabe et al ’09, Emami et al ’10, ...]

 \langle \phi \rangle = \bar{\phi}(t), \langle A_3 \rangle = v(t) \quad \rightarrow \text{time diffs, local 0–3, 1–3, 2–3 Lorentz}
anisotropic inflation and symmetry breaking

- # of isometric symmetries
 dS/Minkowski (4 + 6) → FRW (3 + 3) → Bianchi type 1 (3 + 1)

- local symmetry breaking patterns in anisotropic models

1. inflaton + vector [Watanabe et al ’09, Emami et al ’10, ...]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle A_3 \rangle = v(t) \quad \rightarrow \text{time diffs, local 0-3, 1-3, 2-3 Lorentz} \]

2. inflaton + two form field [Ohashi-Soda-Tsujikawa ’13]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle B_{12} \rangle = v(t) \quad \rightarrow \text{time diffs, local 0-1, 0-2, 3-1, 3-2 Lorentz} \]
anisotropic inflation and symmetry breaking

- # of isometric symmetries
 dS/Minkowski (4 + 6) → FRW (3 + 3) → Bianchi type 1 (3 + 1)

- local symmetry breaking patterns in anisotropic models

1. inflaton + vector [Watanabe et al ’09, Emami et al ’10, ...]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle A_3 \rangle = v(t) \rightarrow \text{time diffs, local 0-3, 1-3, 2-3 Lorentz} \]

2. inflaton + two form field [Ohashi-Soda-Tsujikawa ’13]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle B_{12} \rangle = v(t) \rightarrow \text{time diffs, local 0-1, 0-2, 3-1, 3-2 Lorentz} \]

3. solid inflation [Bartolo-Matarrese-Peloso-Ricciardone ’13]
 \[\langle \phi^1 \rangle = x, \langle \phi^2 \rangle = y, \langle \phi^3 \rangle = \alpha z \rightarrow 3 \text{ spatial diffs} \]
anisotropic inflation and symmetry breaking

- # of isometric symmetries
 \[\text{dS/Minkowski (4 + 6)} \rightarrow \text{FRW (3 + 3)} \rightarrow \text{Bianchi type 1 (3 + 1)} \]

- local symmetry breaking patterns in anisotropic models

1. inflaton + vector \[\text{[Watanabe et al '09, Emami et al '10, ...]}\]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle A_3 \rangle = v(t) \rightarrow \text{time diffs, local 0-3, 1-3, 2-3 Lorentz} \]

2. inflaton + two form field \[\text{[Ohashi-Soda-Tsujikawa '13]}\]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle B_{12} \rangle = v(t) \rightarrow \text{time diffs, local 0-1, 0-2, 3-1, 3-2 Lorentz} \]

3. solid inflation \[\text{[Bartolo-Matarrese-Peloso-Ricciardone '13]}\]
 \[\langle \phi^1 \rangle = x, \langle \phi^2 \rangle = y, \langle \phi^3 \rangle = \alpha z \rightarrow 3 \text{ spatial diffs} \]

2’. Hodge dual of two form model
 \[\langle \phi \rangle = \bar{\phi}(t), \langle \varphi^2 \rangle = Az \rightarrow \text{time & z diffs} \]
anisotropic inflation and symmetry breaking

- # of isometric symmetries
 dS/Minkowski (4 + 6) → FRW (3 + 3) → Bianchi type 1 (3 + 1)

- local symmetry breaking patterns in anisotropic models

 1. inflaton + vector [Watanabe et al ’09, Emami et al ’10, ...]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle A_3 \rangle = v(t) \rightarrow \text{time diffs, local 0-3, 1-3, 2-3 Lorentz} \]

 2. inflaton + two form field [Ohashi-Soda-Tsujikawa ’13]
 \[\langle \phi \rangle = \bar{\phi}(t), \langle B_{12} \rangle = v(t) \rightarrow \text{time diffs, local 0-1, 0-2, 3-1, 3-2 Lorentz} \]

 3. solid inflation [Bartolo-Matarrese-Peloso-Ricciardone ’13]
 \[\langle \phi^1 \rangle = x, \langle \phi^2 \rangle = y, \langle \phi^3 \rangle = \alpha z \rightarrow \text{3 spatial diffs} \]

 2'. Hodge dual of two form model
 \[\langle \phi \rangle = \bar{\phi}(t), \langle \varphi^2 \rangle = A z \rightarrow \text{time & z diffs} \]

focus in this talk
scalar type source of anisotropy
Hodge dual of two form model

two form model of anisotropic inflation [Ohashi-Soda-Tsujikawa ‘13]

\[S = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi) - \frac{1}{12} f^2(\phi) H^{\mu\nu\rho} H_{\mu\nu\rho} \right] \]

- \(H = dB \) is the field strength
- backgrounds are \(\langle \phi \rangle = \bar{\phi}(t) \), \(\langle H_{012} \rangle = v(t) = Af^{-2}(\bar{\phi})ae^{4\sigma} \)
Hodge dual of two form model

two form model of anisotropic inflation [Ohashi-Soda-Tsujikawa ‘13]

\[S = \int d^4 x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi) - \frac{1}{12} f^2(\phi) H^{\mu\nu\rho} H_{\mu\nu\rho} \right] \]

- \(H = dB \) is the field strength

- backgrounds are \(\langle \phi \rangle = \bar{\phi}(t), \langle H_{012} \rangle = v(t) = Af^{-2}(\phi)ae^{4\sigma} \)

Hodge dual

\[f^2(\phi) dB = *d\phi \]
Hodge dual of two form model

two form model of anisotropic inflation [Ohashi-Soda-Tsujikawa ‘13]

\[
S = \int d^4 x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) - \frac{1}{12} f^2(\phi) H^{\mu\nu\rho} H_{\mu\nu\rho} \right]
\]

- \(H = dB \) is the field strength
- backgrounds are \(\langle \phi \rangle = \bar{\phi}(t) \), \(\langle H_{012} \rangle = v(t) = A f^{-2}(\bar{\phi}) a e^{4\sigma} \)

Hodge dual

\[
f^2(\phi) dB = * d\phi
\]

\[
S = \int d^4 x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) - \frac{f^{-2}(\phi)}{2} (\partial_\mu \varphi)^2 \right]
\]

- backgrounds are \(\langle \phi \rangle = \bar{\phi}(t) \), \(\langle \partial_z \varphi \rangle = A \)

\[
\langle \varphi \rangle = A z + \text{constant}
\]
Hodge dual of two form model

two form model of anisotropic inflation [Ohashi-Soda-Tsujikawa ’13]

\[S = \int d^4 x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) - \frac{1}{12} f^2(\phi) H^{\mu \nu \rho} H_{\mu \nu \rho} \right] \]

- \(H = dB \) is the field strength

- backgrounds are \(\langle \phi \rangle = \bar{\phi}(t), \langle H_{012} \rangle = v(t) = Af^{-2}(\bar{\phi})ae^{4\sigma} \)

Hodge dual

\[f^2(\phi) dB = * d\phi \]

\[S = \int d^4 x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) - \frac{f^{-2}(\phi)}{2} (\partial_\mu \varphi)^2 \right] \]

- backgrounds are \(\langle \phi \rangle = \bar{\phi}(t), \langle \partial_z \varphi \rangle = A \)

\[\langle \varphi \rangle = Az + \text{constant} \]

※ z-diffs are broken, but spatially homogeneous
EFT for broken time and z diffs

in unitary gauge, 1. NG modes are eaten by the metric
2. time & z diffs are broken by gauge conditions
EFT for broken time and z diffs

in unitary gauge, 1. NG modes are eaten by the metric

2. time & z diffs are broken by gauge conditions

just as original EFT of inflation, the general action is given by

\[S = S_t + S_z + S_{tz} \]

\[
S_t = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 + \ldots \right]
\]

\[
S_z = \int d^4x \sqrt{-g} \left[-\alpha_1 \delta g^{33} + \alpha_2 (\delta g^{33})^2 + \ldots \right]
\]

\[
S_{tz} = \int d^4x \sqrt{-g} \left[\beta_1 g^{03} + \beta_2 (g^{03})^2 + \ldots \right]
\]
EFT for broken time and z diffs

in unitary gauge, 1. NG modes are eaten by the metric

2. time & z diffs are broken by gauge conditions

just as original EFT of inflation, the general action is given by

\[S = S_t + S_z + S_{tz} \]

\[S_t = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \Lambda - c g^{00} + \frac{M_2^4}{2} \left(\delta g^{00} \right)^2 + \ldots \right] \]

\[S_z = \int d^4x \sqrt{-g} \left[-\alpha_1 \delta g^{33} + \alpha_2 \left(\delta g^{33} \right)^2 + \ldots \right] \]

\[S_{tz} = \int d^4x \sqrt{-g} \left[\beta_1 g^{03} + \beta_2 \left(g^{03} \right)^2 + \ldots \right] \]

background equations of motion:

\[\Lambda = M_{Pl}^2 \left(3H^2 + \dot{H} - \frac{3}{2} H \dot{\sigma} - \frac{1}{2} \ddot{\sigma} \right) \quad c = M_{Pl}^2 \left(-\dot{H} + \frac{3}{2} H \dot{\sigma} + \frac{1}{2} \ddot{\sigma} - 3\ddot{\sigma} \right) \]

\[\alpha_1 = -\frac{1}{2} M_{Pl}^2 a^2 e^{-4\sigma} \left(9H \dot{\sigma} + 3\ddot{\sigma} \right) \quad \beta_1 = 0 \]
EFT for broken time and z diffs

in unitary gauge, 1. NG modes are eaten by the metric

2. time & z diffs are broken by gauge conditions

just as original EFT of inflation, the general action is given by

\[S = S_t + S_z + S_{tz} \]

\[S_t = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \Lambda - c g^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 + \ldots \right] \]

\[S_z = \int d^4x \sqrt{-g} \left[-\alpha_1 \delta g^{33} + \alpha_2 (\delta g^{33})^2 + \ldots \right] \]

\[S_{tz} = \int d^4x \sqrt{-g} \left[\beta_1 g^{03} + \beta_2 (g^{03})^2 + \ldots \right] \]

background equations of motion:

\[\Lambda = M_{Pl}^2 \left(3H^2 + \dot{H} - \frac{3}{2} H\dot{\sigma} - \frac{1}{2} \ddot{\sigma} \right) \quad c = M_{Pl}^2 \left(-\dot{H} + \frac{3}{2} H\dot{\sigma} + \frac{1}{2} \ddot{\sigma} - 3\dot{\sigma}^2 \right) \]

\[\alpha_1 = -\frac{1}{2} M_{Pl}^2 a^2 e^{-4\sigma} (9H\dot{\sigma} + 3\ddot{\sigma}) \quad \beta_1 = 0 \]
revisiting Hodge dual of two form model

the Hodge dual of two form model is captured by

$$S = \int d^4 x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \Lambda - c g^{00} - \alpha_1 \delta g^{33} \right]$$

※ \((\partial_\mu \phi)^2 = \dot{\phi}^2 g^{00}, (\partial_\mu \varphi)^2 = A^2 g^{33}\)

※ all the EFT coefficients are expressed in terms of \(H\) and \(\dot{\varphi}\)
revisiting Hodge dual of two form model

the Hodge dual of two form model

\[
S^{(2)} = \int d^4 x \ a^3 \ [c \ (\pi^2 - (\partial_i \pi)^2) + \alpha_1 \ (\chi^2 - (\partial_i \chi)^2) - 2 \dot{\alpha}_1 a^{-2} e^{4\sigma} \pi \partial_3 \chi]
\]

※ (\partial_\mu \phi)^2 = \dot{\phi}^2 g^{00}, (\partial_\mu \varphi)^2 = A^2 g^{33}

※ all the EFT coefficients are expressed in terms of \(H \) and \(\dot{\sigma} \)

introduce NG modes \(\pi \) & \(\chi \) for broken t & z diffs
revisiting Hodge dual of two form model

the Hodge dual of two form model

\[
S^{(2)} = \int d^4 x \, a^3 \left[c (\dot{\pi}^2 - (\partial_i \pi)^2) + \alpha_1 (\dot{\chi}^2 - (\partial_i \chi)^2) - 2\dot{\alpha}_1 a^{-2} e^{4\sigma} \pi \partial_3 \chi \right]
\]

\[\star (\partial_\mu \phi)^2 = \dot{\phi}^2 g^{00}, \quad (\partial_\mu \varphi)^2 = A^2 g^{33}\]

\[\star \text{ all the EFT coefficients are expressed in terms of } H \text{ and } \dot{\sigma}\]

introducing canonically normalized fields \(\pi_c = \sqrt{2c} \pi, \chi_c = \sqrt{2\alpha_1} \chi \),

\[
S^{(2)} = \int d^4 x \, a^3 \left[\frac{1}{2} (\dot{\pi}_c^2 - (\partial_i \pi_c)^2) + \frac{1}{2} (\dot{\chi}_c^2 - (\partial_i \chi_c)^2 - m^2 \chi_c^2) + \beta \pi \frac{\partial_3 \chi}{a e^{-2\sigma}} \right]
\]
revisiting Hodge dual of two form model

the Hodge dual of two form model is captured by

\[S^{(2)} = \int d^4 x \, a^3 \left[c \left(\dot{\pi}^2 - (\partial_i \pi)^2 \right) + \alpha_1 \left(\dot{\chi}^2 - (\partial_i \chi)^2 \right) - 2\alpha_1 a^{-2} e^{4\sigma} \pi \partial_3 \chi \right] \]

\(\star (\partial_\mu \phi)^2 = \dot{\phi}^2 g^{00}, \quad (\partial_\mu \varphi)^2 = A^2 g^{33} \)

\(\star \) all the EFT coefficients are expressed in terms of \(H \) and \(\dot{\sigma} \)

introducing canonically normalized fields \(\pi_c = \sqrt{2c} \pi, \chi_c = \sqrt{2\alpha_1} \chi \),

\[S^{(2)} = \int d^4 x \, a^3 \left[\frac{1}{2} \left(\dot{\pi}_c^2 - (\partial_i \pi_c)^2 \right) + \frac{1}{2} \left(\dot{\chi}_c^2 - (\partial_i \chi_c)^2 - m_\chi^2 \chi_c^2 \right) + \beta \pi \frac{\partial_3 \chi}{ae^{-2\sigma}} \right] \]

\[m_\chi^2 = -2(1 - 2\Sigma)(2 - \Sigma)H^2, \quad \beta = 3\sqrt{2} H \frac{(-\Sigma)^{1/2}(1 - 2\Sigma)}{\sqrt{\epsilon + \frac{3}{2} \Sigma - 3\Sigma^2}} \]

\(\star \Sigma = \frac{\dot{\sigma}}{H} \) characterizes spacetime anisotropy
revisiting Hodge dual of two form model

the Hodge dual of two form model is captured by

\[S^{(2)} = \int d^4x \, a^3 \left[c (\dot{\pi}^2 - (\partial_i \pi)^2) + \alpha_1 (\dot{\chi}^2 - (\partial_i \chi)^2) - 2\dot{\alpha}_1 a^{-2} e^{4\sigma} \pi \partial_3 \chi \right] \]

\[\times (\partial_\mu \phi)^2 = \dot{\phi}^2 g^{00}, (\partial_\mu \varphi)^2 = A^2 g^{33} \]

\[\times \text{ all the EFT coefficients are expressed in terms of } H \text{ and } \dot{\sigma} \]

introducing canonically normalized fields \(\pi_c = \sqrt{2c} \pi, \chi_c = \sqrt{2\alpha_1} \chi \),

\[S^{(2)} = \int d^4x \, a^3 \left[\frac{1}{2} (\dot{\pi}_c^2 - (\partial_i \pi_c)^2) + \frac{1}{2} (\dot{\chi}_c^2 - (\partial_i \chi_c)^2 - m_\chi^2 \chi_c^2) + \beta \pi \frac{\partial_3 \chi}{ae^{-2\sigma}} \right] \]

\[m_\chi^2 = -2(1 - 2\Sigma)(2 - \Sigma)H^2, \quad \beta = 3\sqrt{2} H \frac{(-\Sigma)^{1/2}(1 - 2\Sigma)}{\sqrt{\epsilon + \frac{3}{2}\Sigma - 3\Sigma^2}} \]

\[\times \Sigma = \frac{\dot{\sigma}}{H} \text{ characterizes spacetime anisotropy} \]

in particular, the mass of \(\chi \) is tachyonic \(m_\chi^2 \simeq -4H^2 \) when \(|\Sigma| \ll 1|\).
statistical anisotropy

time diffs NG mode

π_c

$\beta \pi \frac{\partial_3 \chi}{a}$

anisotropic mixing

z diffs NG mode

$\chi_c \left(m^2 \simeq -4H^2 \right)$
statistical anisotropy

time diffs NG mode
\[\pi_c \]

\[\beta \pi \frac{\partial_3 \chi}{a} \]
anisotropic mixing

z diffs NG mode
\[\chi_c \left(m^2 \simeq -4H^2 \right) \]

two point function of \(\pi_c \)
\[
\left\langle \pi_c \mathbf{k} \pi_c - \mathbf{k} \right\rangle =
\begin{array}{cccccc}
\pi_c & \pi_c & \pi_c & \pi_c \chi_c & \pi_c \chi_c & \pi_c \\
\end{array}
\]
statistical anisotropy

time diffs NG mode
π_c

anisotropic mixing

$\beta \pi \frac{\partial_3 \chi}{a}$

z diffs NG mode
$\chi_c \ (m^2 \simeq -4H^2)$

two point function of π_c

$$\langle \pi_c \mathbf{k} \pi_c \mathbf{-k} \rangle = \begin{array}{cccc}
\pi_c & & \pi_c \\
\times & & \times & & + & & \times \\
\pi_c & & \pi_c & & \pi_c & & \pi_c \chi_c & & \pi_c \chi_c & & \pi_c \chi_c & & \pi_c & & \pi_c \\
\end{array}$$

$$= (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') \frac{H^2}{2k^3} \left[1 + \cos^2 \theta \frac{-18\Sigma}{\epsilon + \frac{2}{3}\Sigma} \right] \left(N_k^2 \right)$$

※ $N_k = \ln(-k\tau)$ is the e-folding number after horizon crossing
statistical anisotropy

two point function of π_c

$$\langle \pi_c k \pi_c - k \rangle = \begin{array}{ccccccc} x & x & + & x & \cdots & x & \cdots & x \\ \pi_c & \pi_c & \pi_c & \pi_c \chi_c & \pi_c \chi_c & \pi_c \chi_c & \pi_c \end{array}$$

$$= (2\pi)^3 \delta^{(3)}(k + k') \frac{H^2}{2k^3} \left[1 + \cos^2 \theta \frac{-18\Sigma}{\epsilon} + \frac{2}{3}\Sigma \frac{N_k^2}{N_k} \right]$$

※ $N_k = \ln(-k\tau)$ is the e-folding number after horizon crossing

constraint on $\Sigma = \frac{\dot{\sigma}}{H}$ is $|\Sigma| < 4.6 \times 10^{-9} \times \frac{\epsilon}{0.01} \times \frac{60^2}{N_k^2}$
summary and prospects

summary of the talk
- how accurate our assumption of isotropic universe?
 → spacetime symmetry based EFT of anisotropic inflation
- global vs local symmetry viewpoints of space time symmetry breaking
 → various local symmetry breaking patterns for anisotropic universe
 ※ various NG mode contents
- EFT construction for Hodge dual of two form model
 1. characterized by time and z diffs breaking
 2. mixing, mass etc are directly related to the spacetime geometry
 3. direct relation between the spacetime share and statistical anisotropy
summary and prospects

in our paper in preparation...
- more general setups for scalar type source of anisotropy
- other symmetry breaking including vector type ones

future directions
- primordial gravitational waves in our approach
- test of homogeneity during inflation
Thank you!